Displaying all 3 publications

Abstract:
Sort:
  1. Loo YS, Bose RJ, McCarthy JR, Mat Azmi ID, Madheswaran T
    Drug Discov Today, 2021 04;26(4):902-915.
    PMID: 33383213 DOI: 10.1016/j.drudis.2020.12.017
    Smart nanocarriers obtained from bacteria and viruses offer excellent biomimetic properties which has led to significant research into the creation of advanced biomimetic materials. Their versatile biomimicry has application as biosensors, biomedical scaffolds, immobilization, diagnostics, and targeted or personalized treatments. The inherent natural traits of biomimetic and bioinspired bacteria- and virus-derived nanovesicles show potential for their use in clinical vaccines and novel therapeutic drug delivery systems. The past few decades have seen significant progress in the bioengineering of bacteria and viruses to manipulate and enhance their therapeutic benefits. From a pharmaceutical perspective, biomimetics enable the safe integration of naturally occurring bacteria and virus particles to achieve high, stable rates of cellular transfection/infection and prolonged circulation times. In addition, biomimetic technologies can overcome safety concerns associated with live-attenuated and inactivated whole bacteria or viruses. In this review, we provide an update on the utilization of bacterial and viral particles as drug delivery systems, theranostic carriers, and vaccine/immunomodulation modalities.
  2. Jing JLJ, Pei Yi T, Bose RJC, McCarthy JR, Tharmalingam N, Madheswaran T
    PMID: 32403261 DOI: 10.3390/ijerph17093326
    Hand hygiene is of utmost importance as it may be contaminated easily from direct contact with airborne microorganism droplets from coughs and sneezes. Particularly in situations like pandemic outbreak, it is crucial to interrupt the transmission chain of the virus by the practice of proper hand sanitization. It can be achieved with contact isolation and strict infection control tool like maintaining good hand hygiene in hospital settings and in public. The success of the hand sanitization solely depends on the use of effective hand disinfecting agents formulated in various types and forms such as antimicrobial soaps, water-based or alcohol-based hand sanitizer, with the latter being widely used in hospital settings. To date, most of the effective hand sanitizer products are alcohol-based formulations containing 62%-95% of alcohol as it can denature the proteins of microbes and the ability to inactivate viruses. This systematic review correlated with the data available in Pubmed, and it will investigate the range of available hand sanitizers and their effectiveness as well as the formulation aspects, adverse effects, and recommendations to enhance the formulation efficiency and safety. Further, this article highlights the efficacy of alcohol-based hand sanitizer against the coronavirus.
  3. Bose RJC, Tharmalingam N, Choi Y, Madheswaran T, Paulmurugan R, McCarthy JR, et al.
    Int J Nanomedicine, 2020;15:8437-8449.
    PMID: 33162754 DOI: 10.2147/IJN.S271850
    BACKGROUND: Lipid polymer hybrid nanoparticles (LPHNPs) have been widely investigated in drug and gene delivery as well as in medical imaging. A knowledge of lipid-based surface engineering and its effects on how the physicochemical properties of LPHNPs affect the cell-nanoparticle interactions, and consequently how it influences the cytological response, is in high demand.

    METHODS: Herein, we have engineered antibiotic-loaded (doxycycline or vancomycin) LPHNPs with cationic and zwitterionic lipids and examined the effects on their physicochemical characteristics (size and charge), antibiotic entrapment efficiency, and the in vitro intracellular bacterial killing efficiency against Mycobacterium smegmatis or Staphylococcus aureus infected macrophages.

    RESULTS: The incorporation of cationic or zwitterionic lipids in the LPHNP formulation resulted in a size reduction in LPHNPs formulations and shifted the surface charge of bare NPs towards positive or neutral values. Also observed were influences on the drug incorporation efficiency and modulation of the drug release from the biodegradable polymeric core. The therapeutic efficacy of LPHNPs loaded with vancomycin was improved as its minimum inhibitory concentration (MIC) (2 µg/mL) versus free vancomycin (4 µg/mL). Importantly, our results show a direct relationship between the cationic surface nature of LPHNPs and its intracellular bacterial killing efficiency as the cationic doxycycline or vancomycin loaded LPHNPs reduced 4 or 3 log CFU respectively versus the untreated controls.

    CONCLUSION: In our study, modulation of surface charge in the nanomaterial formulation increased macrophage uptake and intracellular bacterial killing efficiency of LPHNPs loaded with antibiotics, suggesting alternate way for optimizing their use in biomedical applications.

Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links