Solid waste generation is a huge contributor to environmental pollution issues, and food wastes are prominent in this category due to their large generation on a day-to-day basis. Thus, the settlement of daily food waste is one of the major constraints and needs innovative manufacturing sheme to valorize solid waste in sustainable manner. Moreover, these food wastes are rich in organic content, which has promising scope for their value-added products. In the present study, raw mango seed waste has been biotransformed to produce bacterial hydrolytic enzymes as feedstock. On investigating the impact of substrate, the highest bacterial cellulase production was recorded to be 18 IU/gds FP (filter paper) in 24 h of microbial incubation at 5 g of substrate in solid-state fermentation (SSF). Furthermore, at 40 °C and pH 6.0, 23 IU/gds FP enzyme could be produced in 24 h of SSF. Beside this, on comparing the influence of inorganic and organic nitrogen sources, urea has been found to provide better cellulase production, which yielded 28 IU/gds FP in 24 h of incubation, along with 77 IU/gds BG (β-glucosidase) and 89 IU/gds EG (endoglucanase). On the other hand, Tween-40 and Tween-80, two different surfactants, were employed at a 1.0% concentration for 24 h of incubation. It was noticed that Tween-80 showed complete enzyme activity at 24 h, which was found to be relatively superior to that of Tween-40. This study may have potential utility in enzyme production using mango seed as a food waste for various industrial applications.
In 2008, we published the first set of guidelines for standardizing research in autophagy. Since then, this topic has received increasing attention, and many scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Thus, it is important to formulate on a regular basis updated guidelines for monitoring autophagy in different organisms. Despite numerous reviews, there continues to be confusion regarding acceptable methods to evaluate autophagy, especially in multicellular eukaryotes. Here, we present a set of guidelines for investigators to select and interpret methods to examine autophagy and related processes, and for reviewers to provide realistic and reasonable critiques of reports that are focused on these processes. These guidelines are not meant to be a dogmatic set of rules, because the appropriateness of any assay largely depends on the question being asked and the system being used. Moreover, no individual assay is perfect for every situation, calling for the use of multiple techniques to properly monitor autophagy in each experimental setting. Finally, several core components of the autophagy machinery have been implicated in distinct autophagic processes (canonical and noncanonical autophagy), implying that genetic approaches to block autophagy should rely on targeting two or more autophagy-related genes that ideally participate in distinct steps of the pathway. Along similar lines, because multiple proteins involved in autophagy also regulate other cellular pathways including apoptosis, not all of them can be used as a specific marker for bona fide autophagic responses. Here, we critically discuss current methods of assessing autophagy and the information they can, or cannot, provide. Our ultimate goal is to encourage intellectual and technical innovation in the field.