Flood is among the natural disasters that commonly happened in Malaysia every year. During the flood, victims faced clean water shortages and deterioration of the environment resulting in long waiting times for aid to access. Hence, affordable and efficient filters are needed to supply clean water in the affected areas. Application of xylem tissue inside plant stem has the potential as a filter for water filtration. This research focuses on xylem tissue in Malaysian tropical plants from cassava stem. Cassava stems were prepared in a small-scale set-up as the xylem was used as a filter. Effects of cross-sectional area and hydrostatic pressure were analyzed and the results showed a directly proportional relationship with permeate flow rate. Upon filtration with red dye solution, total dye removal was achieved using a xylem with a minimal length of 3 cm and onwards. While for bacteria removal, E. coli bacteria have been removed when tested with a bacteria count plate. Thus, this study demonstrated the potential of the xylem tissue of the cassava plant as affordable and available natural raw materials to be used as water filters during an emergency.
Extensive application of metal powder, particularly in nanosize could potentially lead to catastrophic dust explosion, due to their pyrophoric behavior, ignition sensitivity, and explosivity. To assess the appropriate measures preventing accidental metal dust explosions, it is vital to understand the physicochemical properties of the metal dust and their kinetic mechanism. In this work, explosion severity of aluminum and silver powder, which can be encountered in a passivated emitter and rear contact (PERC) solar cell, was explored in a 0.0012 m3 cylindrical vessel, by varying the particle size and powder concentration. The P max and dP/dt max values of metal powder were demonstrated to increase with decreasing particle size. Additionally, it was found that the explosion severity of silver powder was lower than that of aluminum powder due to the more apparent agglomeration effect of silver particles. The reduction on the specific surface area attributed to the particles' agglomeration affects the oxidation reaction of the metal powder, as illustrated in the thermogravimetric (TG) curves. A sluggish oxidation reaction was demonstrated in the TG curve of silver powder, which is contradicted with aluminum powder. From the X-ray photoelectron spectroscopy (XPS) analysis, it is inferred that silver powder exhibited two reactions in which the dominant reaction produced Ag and the other reaction formed Ag2O. Meanwhile, for aluminum powder, explosion products only comprise Al2O3.