Displaying all 3 publications

Abstract:
Sort:
  1. Gunathilake TMSU, Ching YC, Chuah CH, Hai ND, Nai-Shang L
    Pharm Res, 2020 Aug 30;37(9):178.
    PMID: 32864721 DOI: 10.1007/s11095-020-02910-z
    PURPOSE: Among various types of external stimuli-responsive DDS, electric-responsive DDS are more promising carriers as they exploit less complex, easily miniaturized electric signal generators and the possibility of fine-tuning the electric signals. This study investigates the use of intrinsically biocompatible biopolymers in electro-simulative drug delivery to enhance the release of poorly-soluble/non-ionic drug.

    METHODS: CMC/PLA/ZnO/CUR nanocomposite films were prepared by the dispersion of CMC and ZnO NPs in solubilized PLA/curcumin medium, followed by solvent casting step. Curcumin is poorly water-soluble and used as the model drug in this study. The films with different contents of CMC, PLA and ZnO NPs were characterized using FTIR, impedance spectroscopy, tensile testing and FESEM imaging. The in vitro drug release of the films was carried out in deionized water under DC electric field of 4.5 V.

    RESULTS: The ionic conductivity of the films increased with increasing the CMC concentration of the film. The addition of a small amount of ZnO NPs (2%) successfully restored the tensile properties of the film. In response to the application of the electric field, the composite films released drug with a near-linear profile. There was no noticeable amount of passive diffusion of the drug from the film with the absence of the electric field.

    CONCLUSION: The outcome of this study enabled the design of an electric-responsive nanocomposite platform for the delivery of poorly water-soluble/non-ionic drugs. Graphical abstract.

  2. Mhd Haniffa MAC, Ching YC, Chuah CH, Yong Ching K, Nazri N, Abdullah LC, et al.
    Carbohydr Polym, 2017 Oct 01;173:91-99.
    PMID: 28732923 DOI: 10.1016/j.carbpol.2017.05.084
    Recently, surface functionality and thermal property of the green nanomaterials have received wide attention in numerous applications. In this study, microcrystalline cellulose (MCC) was used to prepare the nanocrystalline celluloses (NCCs) using acid hydrolysis method. The NCCs was treated with TEMPO [(2,2,6,6-tetramethylpiperidin-1-yl)oxy radical]-oxidation to prepare TEMPO-oxidized NCCs. Cellulose nanofibrils (CNFs) also prepared from MCC using TEMPO-oxidation. The effects of rapid cooling and chemical treatments on the thermo-structural property studies of the prepared nanocelluloses were investigated through FTIR, thermogravimetric analysis-derivative thermogravimetric (TGA-DTG), and XRD. A posteriori knowledge of the FTIR and TGA-DTG analysis revealed that the rapid cooling treatment enhanced the hydrogen bond energy and thermal stability of the TEMPO-oxidized NCC compared to other nanocelluloses. XRD analysis exhibits the effect of rapid cooling on pseudo 2Ihelical conformation. This was the first investigation performed on the effect of rapid cooling on structural properties of the nanocellulose.
  3. Sampath Udeni Gunathilake TM, Ching YC, Chuah CH, Illias HA, Ching KY, Singh R, et al.
    Int J Biol Macromol, 2018 Oct 15;118(Pt A):1055-1064.
    PMID: 30001596 DOI: 10.1016/j.ijbiomac.2018.06.147
    Nanocellulose reinforced chitosan hydrogel was synthesized using chemical crosslinking method for the delivery of curcumin which is a poorly water-soluble drug. Curcumin extracted from the dried rhizomes of Curcuma longa was incorporated to the hydrogel via in situ loading method. A nonionic surfactant (Tween 20) was incorporated into the hydrogel to improve the solubility of curcumin. After the gas foaming process, hydrogel showed large interconnected pore structures. The release studies in gastric medium showed that the cumulative release of curcumin increased from 0.21% ± 0.02% to 54.85% ± 0.77% with the increasing of Tween 20 concentration from 0% to 30% (w/v) after 7.5 h. However, the entrapment efficiency percentage decreased with the addition of Tween 20. The gas foamed hydrogel showed higher initial burst release within the first 120 min compared to hydrogel formed at atmospheric condition. The solubility of curcumin would increase to 3.014 ± 0.041 mg/mL when the Tween 20 concentration increased to 3.2% (w/v) in simulated gastric medium. UV-visible spectra revealed that the drug retained its chemical activity after in vitro release. From these findings, it is believed that the nonionic surfactant incorporated chitosan/nanocellulose hydrogel can provide a platform to overcome current problems associated with curcumin delivery.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links