METHODS: We conducted an online survey among neurosurgery residents in Indonesia, Malaysia, Philippines, Singapore, and Thailand from May 22 to 31, 2020 using Google Forms. The 33-item questionnaire collected data on elective and emergency neurosurgical operations, ongoing learning activities, and health worker safety.
RESULTS: A total of 298 of 470 neurosurgery residents completed the survey, equivalent to a 63% response rate. The decrease in elective neurosurgical operations in Indonesia and in the Philippines (median, 100% for both) was significantly greater compared with other countries (P < 0.001). For emergency operations, trainees in Indonesia and Malaysia had a significantly greater reduction in their caseload (median, 80% and 70%, respectively) compared with trainees in Singapore and Thailand (median, 20% and 50%, respectively; P < 0.001). Neurosurgery residents were most concerned about the decrease in their hands-on surgical experience, uncertainty in their career advancement, and occupational safety in the workplace. Most of the residents (n = 221, 74%) believed that the COVID-19 crisis will have a negative impact on their neurosurgical training overall.
CONCLUSIONS: An effective national strategy to control COVID-19 is crucial to sustain neurosurgical training and to provide essential neurosurgical services. Training programs in Southeast Asia should consider developing online learning modules and setting up simulation laboratories to allow trainees to systematically acquire knowledge and develop practical skills during these challenging times.
OBJECTIVE: We hypothesized that the risk of infections after primary cranioplasty in adult patients who underwent craniectomies for non-infection-related indications are no different when performed early or delayed. We tested this hypothesis in a prospective, multicenter, cohort study.
METHODS: Data were collected prospectively from 5 neurosurgical centers in the United Kingdom, Malaysia, Singapore, and Bangladesh. Only patients older than 16 years from the time of the non-infection-related craniectomy were included. The recruitment period was over 17 months, and postoperative follow-up was at least 6 months. Patient baseline characteristics, rate of infections, and incidence of hydrocephalus were collected.
RESULTS: Seventy patients were included in this study. There were 25 patients in the early cranioplasty cohort (cranioplasty performed before 12 weeks) and 45 patients in the late cranioplasty cohort (cranioplasty performed after 12 weeks). The follow-up period ranged between 16 and 34 months (mean, 23 months). Baseline characteristics were largely similar but differed only in prophylactic antibiotics received (P = 0.28), and primary surgeon performing cranioplasty (P = 0.15). There were no infections in the early cranioplasty cohort, whereas 3 infections were recorded in the late cohort. This did not reach statistical significance (P = 0.55).
CONCLUSIONS: Early cranioplasty in non-infection-related craniectomy is relatively safe. There does not appear to be an added advantage to delaying cranioplasties more than 12 weeks after the initial craniectomy in terms of infection reduction. There was no significant difference in infection rates or risk of hydrocephalus between the early and late cohorts.