Displaying all 2 publications

Abstract:
Sort:
  1. Salamah MF, Ravishankar D, Vaiyapuri R, Moraes LA, Patel K, Perretti M, et al.
    J Thromb Haemost, 2019 Jul;17(7):1120-1133.
    PMID: 31033193 DOI: 10.1111/jth.14466
    Essentials The role of formyl peptide receptor 1 (FPR1) and its ligand, fMLF, in the regulation of platelet function, hemostasis, and thrombosis is largely unknown. Fpr1-deficient mice and selective inhibitors for FPR1 were used to investigate the function of fMLF and FPR1 in platelets. N-formyl-methionyl-leucyl-phenylalanine primes platelet activation and augments thrombus formation, mainly through FPR1 in platelets. Formyl peptide receptor 1 plays a pivotal role in the regulation of platelet function.

    BACKGROUND: Formyl peptide receptors (FPRs) play pivotal roles in the regulation of innate immunity and host defense. The FPRs include three family members: FPR1, FPR2/ALX, and FPR3. The activation of FPR1 by its high-affinity ligand, N-formyl-methionyl-leucyl-phenylalanine (fMLF) (a bacterial chemoattractant peptide), triggers intracellular signaling in immune cells such as neutrophils and exacerbates inflammatory responses to accelerate the clearance of microbial infection. Notably, fMLF has been demonstrated to induce intracellular calcium mobilization and chemotaxis in platelets that are known to play significant roles in the regulation of innate immunity and inflammatory responses. Despite a plethora of research focused on the roles of FPR1 and its ligands such as fMLF on the modulation of immune responses, their impact on the regulation of hemostasis and thrombosis remains unexplored.

    OBJECTIVE: To determine the effects of fMLF on the modulation of platelet reactivity, hemostasis, and thrombus formation.

    METHODS: Selective inhibitors for FPR1 and Fpr1-deficient mice were used to determine the effects of fMLF and FPR1 on platelets using various platelet functional assays.

    RESULTS: N-formyl-methionyl-leucyl-phenylalanine primes platelet activation through inducing distinctive functions and enhances thrombus formation under arterial flow conditions. Moreover, FPR1 regulates normal platelet function as its deficiency in mouse or blockade in human platelets using a pharmacological inhibitor resulted in diminished agonist-induced platelet activation.

    CONCLUSION: Since FPR1 plays critical roles in numerous disease conditions, its influence on the modulation of platelet activation and thrombus formation may provide insights into the mechanisms that control platelet-mediated complications under diverse pathological settings.

  2. Salamah MF, Ravishankar D, Kodji X, Moraes LA, Williams HF, Vallance TM, et al.
    Blood Adv, 2018 Nov 13;2(21):2973-2985.
    PMID: 30413433 DOI: 10.1182/bloodadvances.2018021758
    Platelet-associated complications including thrombosis, thrombocytopenia, and hemorrhage are commonly observed during various inflammatory diseases such as sepsis, inflammatory bowel disease, and psoriasis. Despite the reported evidence on numerous mechanisms/molecules that may contribute to the dysfunction of platelets, the primary mechanisms that underpin platelet-associated complications during inflammatory diseases are not fully established. Here, we report the discovery of formyl peptide receptor 2, FPR2/ALX, in platelets and its primary role in the development of platelet-associated complications via ligation with its ligand, LL37. LL37 acts as a powerful endogenous antimicrobial peptide, but it also regulates innate immune responses. We demonstrate the impact of LL37 in the modulation of platelet reactivity, hemostasis, and thrombosis. LL37 activates a range of platelet functions, enhances thrombus formation, and shortens the tail bleeding time in mice. By utilizing a pharmacological inhibitor and Fpr2/3 (an ortholog of human FPR2/ALX)-deficient mice, the functional dependence of LL37 on FPR2/ALX was determined. Because the level of LL37 is increased in numerous inflammatory diseases, these results point toward a critical role for LL37 and FPR2/ALX in the development of platelet-related complications in such diseases. Hence, a better understanding of the clinical relevance of LL37 and FPR2/ALX in diverse pathophysiological settings will pave the way for the development of improved therapeutic strategies for a range of thromboinflammatory diseases.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links