Displaying all 5 publications

Abstract:
Sort:
  1. Powell R, Ahmad M, Gilbert FJ, Brian D, Johnston M
    Br J Health Psychol, 2015 Sep;20(3):449-65.
    PMID: 25639980 DOI: 10.1111/bjhp.12132
    The movement of patients in magnetic resonance imaging (MRI) scanners results in motion artefacts which impair image quality. Non-completion of scans leads to delay in diagnosis and increased costs. This study aimed to develop and evaluate an intervention to enable patients to stay still in MRI scanners (reducing motion artefacts) and to enhance scan completion. Successful scan outcome was deemed to be completing the scan with no motion artefacts.
  2. Degowin RL, Eppes RB, Carson PE, Powell RD
    Bull World Health Organ, 1966;34(5):671-81.
    PMID: 5328901
    In view of the problems caused by the chloroquine-resistance of some strains of Plasmodium falciparum, the authors have investigated the effectiveness of diaphenylsulfone against two such resistant strains, from Malaya and Viet-Nam. They found that diaphenylsulfone given during acute attacks of malaria had a blood schizontocidal activity against the Malayan resistant strain but was not rapidly effective in terminating acute attacks in non-immune persons, and that, when the drug was given prophylactically in relatively small doses, it was substantially effective in preventing patency of mosquito-induced infection with the same strain. The protective effect of diaphenylsulfone is that of a clinical prophylactic or suppressive drug; it does not appear to be a true causal prophylactic. It was also found that the protective effect is vitiated by the concurrent administration of paraaminobenzoic acid.These studies indicate a need for further assessment of the antimalarial value of sulfones and sulfonamides, both alone and in combination with other drugs, for prevention and cure.
  3. Hunter E, Salter M, Powell R, Dring A, Naithani T, Chatziioannou ME, et al.
    Cancers (Basel), 2023 May 10;15(10).
    PMID: 37345033 DOI: 10.3390/cancers15102696
    BACKGROUND: Unprecedented advantages in cancer treatment with immune checkpoint inhibitors (ICIs) remain limited to only a subset of patients. Systemic analyses of the regulatory 3D genome architecture linked to individual epigenetic and immunogenetic controls associated with tumour immune evasion mechanisms and immune checkpoint pathways reveal a highly prevalent molecular profile predictive of response to PD-1/PD-L1 ICIs. A clinical blood test based on a set of eight (8) 3D genomic biomarkers has been developed and validated on the basis of an observational trial to predict response to ICI therapy.

    METHODS: The predictive eight biomarker set is derived from prospective observational clinical trials, representing 280 treatments with Pembrolizumab, Atezolizumab, Durvalumab, Nivolumab, and Avelumab in a broad range of indications: melanoma, lung, hepatocellular, renal, breast, bladder, colon, head and neck, bone, brain, lymphoma, prostate, vulvar, and cervical cancers.

    RESULTS: The 3D genomic eight biomarker panel for response to immune checkpoint therapy achieved a high accuracy of 85%, sensitivity of 93%, and specificity of 82%.

    CONCLUSIONS: This study demonstrates that a 3D genomic approach can be used to develop a predictive clinical assay for response to PD-1/PD-L1 checkpoint inhibition in cancer patients.

Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links