Displaying all 2 publications

Abstract:
Sort:
  1. Selvachandran G, Quek SG, Paramesran R, Ding W, Son LH
    Artif Intell Rev, 2023;56(2):915-964.
    PMID: 35498558 DOI: 10.1007/s10462-022-10185-6
    The exponential increase in the number of diabetics around the world has led to an equally large increase in the number of diabetic retinopathy (DR) cases which is one of the major complications caused by diabetes. Left unattended, DR worsens the vision and would lead to partial or complete blindness. As the number of diabetics continue to increase exponentially in the coming years, the number of qualified ophthalmologists need to increase in tandem in order to meet the demand for screening of the growing number of diabetic patients. This makes it pertinent to develop ways to automate the detection process of DR. A computer aided diagnosis system has the potential to significantly reduce the burden currently placed on the ophthalmologists. Hence, this review paper is presented with the aim of summarizing, classifying, and analyzing all the recent development on automated DR detection using fundus images from 2015 up to this date. Such work offers an unprecedentedly thorough review of all the recent works on DR, which will potentially increase the understanding of all the recent studies on automated DR detection, particularly on those that deploys machine learning algorithms. Firstly, in this paper, a comprehensive state-of-the-art review of the methods that have been introduced in the detection of DR is presented, with a focus on machine learning models such as convolutional neural networks (CNN) and artificial neural networks (ANN) and various hybrid models. Each AI will then be classified according to its type (e.g. CNN, ANN, SVM), its specific task(s) in performing DR detection. In particular, the models that deploy CNN will be further analyzed and classified according to some important properties of the respective CNN architectures of each model. A total of 150 research articles related to the aforementioned areas that were published in the recent 5 years have been utilized in this review to provide a comprehensive overview of the latest developments in the detection of DR.

    SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s10462-022-10185-6.

  2. Quek SG, Garg H, Selvachandran G, Palanikumar M, Arulmozhi K, Smarandache F
    Soft comput, 2023 May 22.
    PMID: 37362303 DOI: 10.1007/s00500-023-08338-y
    This article introduces the structure of the (t,s)-regulated interval-valued neutrosophic soft set (abbr. (t,s)-INSS). The structure of (t,s)-INSS is shown to be capable of handling the sheer heterogeneity and complexity of real-life situations, i.e. multiple inputs with various natures (hence neutrosophic), uncertainties over the input strength (hence interval-valued), the existence of different opinions (hence soft), and the perception at different strictness levels (hence (t,s)-regulated). Besides, a novel distance measure for the (t,s)-INSS model is proposed, which is truthful to the nature of each of the three membership (truth, indeterminacy, falsity) values present in a neutrosophic system. Finally, a Technique for Order Preference by Similarity to Ideal Solution (TOPSIS) and a Viekriterijumsko Kompromisno Rangiranje (VIKOR) algorithm that works on the (t,s)-INSS are introduced. The design of the proposed algorithms consists of TOPSIS and VIKOR frameworks that deploy a novel distance measure truthful to its intuitive meaning. The conventional method of TOPSIS and VIKOR will be generalized for the structure of (t,s)-INSS. The parameters t and s in the (t,s)-INSS model take the role of strictness in accepting a collection of data subject to the amount of mutually contradicting information present in that collection of data. The proposed algorithm will then be subjected to rigorous testing to justify its consistency with human intuition, using numerous examples which are specifically made to tally with the various human intuitions. Both the proposed algorithms are shown to be consistent with human intuitions through all the tests that were conducted. In comparison, all other works in the previous literature failed to comply with all the tests for consistency with human intuition. The (t,s)-INSS model is designed to be a conclusive generalization of Pythagorean fuzzy sets, interval neutrosophic sets, and fuzzy soft sets. This combines the advantages of all the three previously established structures, as well as having user-customizable parameters t and s, thereby enabling the (t,s)-INSS model to handle data of an unprecedentedly heterogeneous nature. The distance measure is a significant improvement over the current disputable distance measures, which handles the three types of membership values in a neutrosophic system as independent components, as if from a Euclidean vector. Lastly, the proposed algorithms were applied to data relevant to the ongoing COVID-19 pandemic which proves indispensable for the practical implementation of artificial intelligence.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links