Displaying all 2 publications

Abstract:
Sort:
  1. Selvaraj M, Assiri MA, Rokhum SL, Manjunatha C, Appaturi JN, Murugesan S, et al.
    Dalton Trans, 2021 Nov 02;50(42):15118-15128.
    PMID: 34612261 DOI: 10.1039/d1dt01760h
    A sustainable method was used to produce aromatic ketones by the solvent-free benzylic oxidation of aromatics over mesoporous Cu(II)-containing propylsalicylaldimine anchored on the surface of Santa Barbara Amorphous type material-15 (CPSA-SBA-15) catalysts. For comparison, mesoporous Cu(II)-containing propylsalicylaldimine anchored with Mobil Composition of Matter-41 (CPSA-MCM-41) was assessed for these reactions under similar reaction conditions. The washed CPSA-SBA-15(0.2) (W-CPSA-SBA-15(0.2)) catalyst was prepared using an easy chemical method for the complete removal of non-framework CuO nanoparticle species on the surface of pristine CPSA-SBA-15(0.2) (p-CPSA-SBA-15(0.2) prepared with 0.2 wt% of Cu, and its catalytic activity was evaluated with different reaction parameters, oxidants and solvents. In order to confirm the catalytic stability, the recyclability was assessed, and the performance of hot-filtration experiments was also evaluated. All the catalysts used for these catalytic reactions were characterized using many instrumental techniques to pinpoint the mesoporous nature and active sites of the catalysts. The proposed reaction mechanism has been well documented on the basis of catalytic results obtained for solvent-free oxidation of aromatics. Based on the catalytic results, we found that W-CPSA-SBA-15(0.2) is a very ecofriendly catalyst with exceptional catalytic activity.
  2. Ao S, Rashid U, Shi D, Rokhum SL, Tg Thuy L, Awad Alahmadi T, et al.
    Environ Res, 2024 Mar 15;245:118025.
    PMID: 38151153 DOI: 10.1016/j.envres.2023.118025
    The study investigates the potential of utilizing banana trunk-derived porous activated biochar enriched with SO3H- as a catalyst for eco-friendly biodiesel production from the microalga Chlorella vulgaris. An extensive analysis, employing advanced techniques such as XRD, FTIR, TGA, XPS, NH3-TPD, BET, SEM-EDX, and TEM, was conducted to elucidate the physicochemical properties of BT-SO3H catalysts. The synthesized catalyst demonstrated its efficiency in converting the total lipids of Chlorella vulgaris into biodiesel, with varying concentrations of 3%, 5%, and 7%. Notably, using a 5% BT-SO3H concentration resulted in remarkably higher biodiesel production about 58.29%. Additionally, the fatty acid profile of C. vulgaris biodiesel indicated that C16:0 was the predominant fatty acid at 24.31%, followed by C18:1 (19.68%), C18:3 (11.45%), and C16:1 (7.56%). Furthermore, the biodiesel produced via 5% BT-SO3H was estimated to have higher levels of saturated fatty acids (SFAs) at 34.28%, monounsaturated fatty acids (MUFAs) at 30.70%, and polyunsaturated fatty acids (PUFAs) at 24.24%. These findings highlight the promising potential of BT-SO3H catalysts for efficient and environmentally friendly biodiesel production from microalgal species.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links