Displaying all 3 publications

Abstract:
Sort:
  1. Masseran N, Safari MAM
    PMID: 34201763 DOI: 10.3390/ijerph18136754
    This article proposes a novel data selection technique called the mixed peak-over-threshold-block-maxima (POT-BM) approach for modeling unhealthy air pollution events. The POT technique is employed to obtain a group of blocks containing data points satisfying extreme-event criteria that are greater than a particular threshold u. The selected groups are defined as POT blocks. In parallel with that, a declustering technique is used to overcome the problem of dependency behaviors that occurs among adjacent POT blocks. Finally, the BM concept is integrated to determine the maximum data points for each POT block. Results show that the extreme data points determined by the mixed POT-BM approach satisfy the independent properties of extreme events, with satisfactory fitted model precision results. Overall, this study concludes that the mixed POT-BM approach provides a balanced tradeoff between bias and variance in the statistical modeling of extreme-value events. A case study was conducted by modeling an extreme event based on unhealthy air pollution events with a threshold u > 100 in Klang, Malaysia.
  2. Masseran N, Safari MAM
    Environ Monit Assess, 2020 Jun 17;192(7):441.
    PMID: 32557137 DOI: 10.1007/s10661-020-08376-1
    Modeling and evaluating the behavior of particulate matter (PM10) is an important step in obtaining valuable information that can serve as a basis for environmental risk management, planning, and controlling the adverse effects of air pollution. This study proposes the use of a Markov chain model as an alternative approach for deriving relevant insights and understanding of PM10 data. Using first- and higher-order Markov chains, we analyzed daily PM10 index data for the city of Klang, Malaysia and found the Markov chain model to fit the PM10 data well. Based on the fitted model, we comprehensively describe the stochastic behaviors in the PM10 index based on the properties of the Markov chain, including its states classification, ergodic properties, long-term behaviors, and mean return times. Overall, this study concludes that the Markov chain model provides a good alternative technique for obtaining valuable information from different perspectives for the analysis of PM10 data.
  3. Masseran N, Safari MAM, Tajuddin RRM
    Environ Monit Assess, 2024 May 08;196(6):523.
    PMID: 38717514 DOI: 10.1007/s10661-024-12700-4
    Air pollution events can be categorized as extreme or non-extreme on the basis of their magnitude of severity. High-risk extreme air pollution events will exert a disastrous effect on the environment. Therefore, public health and policy-making authorities must be able to determine the characteristics of these events. This study proposes a probabilistic machine learning technique for predicting the classification of extreme and non-extreme events on the basis of data features to address the above issue. The use of the naïve Bayes model in the prediction of air pollution classes is proposed to leverage its simplicity as well as high accuracy and efficiency. A case study was conducted on the air pollution index data of Klang, Malaysia, for the period of January 01, 1997, to August 31, 2020. The trained naïve Bayes model achieves high accuracy, sensitivity, and specificity on the training and test datasets. Therefore, the naïve Bayes model can be easily applied in air pollution analysis while providing a promising solution for the accurate and efficient prediction of extreme or non-extreme air pollution events. The findings of this study provide reliable information to public authorities for monitoring and managing sustainable air quality over time.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links