PURPOSE: To evaluate the inter-rater reliability of Rajasekaran's kyphosis classification through a multicenter validation study.
OVERVIEW OF LITERATURE: The classification of kyphosis, developed by Rajasekaran, incorporates factors related to curve characteristics, including column deficiency, disc mobility, curve magnitude, and osteotomy requirements. Although the classification offers significant benefits in determining prognosis and management decisions, it has not been subjected to multicenter validation.
METHODS: A total of 30 sets of images, including plain radiographs, computed tomography scans, and magnetic resonance imaging scans, were randomly selected from our hospital patient database. All patients had undergone deformity correction surgery for kyphosis. Twelve spine surgeons from the Asia-Pacific region (six different countries) independently evaluated and classified the deformity types and proposed their surgical recommendations. This information was then compared with standard deformity classification and surgical recommendations.
RESULTS: The kappa coefficients for the classification were as follows: 0.88 for type 1A, 0.78 for type 1B, 0.50 for type 2B, 0.40 for type 3A, 0.63 for type 3B, and 0.86 for type 3C deformities. The overall kappa coefficient for the classification was 0.68. Regarding the repeatability of osteotomy recommendations, kappa values were the highest for Ponte's (Schwab type 2) osteotomy (kappa 0.8). Kappa values for other osteotomy recommendations were 0.52 for pedicle subtraction/disc-bone osteotomy (Schwab type 3/4), 0.42 for vertebral column resection (VCR, type 5), and 0.30 for multilevel VCRs (type 6).
CONCLUSIONS: Excellent accuracy was found for types 1A, 1B, and 3C deformities (ends of spectrum). There was more variation among surgeons in differentiating between one-column (types 2A and 2B) and two-column (types 3A and 3B) deficiencies, as surgeons often failed to recognize the radiological signs of posterior column failure. This failure to identify column deficiencies can potentially alter kyphosis management. There was excellent consensus among surgeons in the recommendation of type 2 osteotomy; however, some variation was observed in their choice for other osteotomies.
PURPOSE: Although intraoperative neurophysiological monitoring (IONM) is critical in spine surgery, its usage is largely based on the surgeon's discretion, and studies on its usage trends in Asia-Pacific countries are lacking. This study aimed to examine current trends in IONM usage in Asia-Pacific countries.
OVERVIEW OF LITERATURE: IONM is an important tool for minimizing neurological complications and detecting spinal cord injuries after spine surgery. IONM can be performed using several modalities, such as transcranial electrical stimulation-muscle evoked potentials (Tc-MEP) and somatosensory evoked potentials (SEP).
METHODS: Spine surgeons of the Asia-Pacific Spine Society were asked to respond to a web-based survey on IONM. The questionnaire covered various aspects of IONM, including its common modality, Tc-MEP details, necessities for consistent use, and recommended modalities in major spine surgeries and representative surgical procedures.
RESULTS: Responses were received from 193 of 626 spine surgeons. Among these respondents, 177 used IONM routinely. Among these 177 respondents, 17 mainly used SEP, whereas the majority favored Tc-MEPs. Although a >50% decrease is the commonly used alarm point in Tc-MEP, half of the Tc-MEP users had no protocols planned for such scenarios. Moreover, half of the Tc-MEP users experienced complications, with bite injuries being the most common. Most respondents strongly recommended IONM in deformity surgery for pediatric and adult populations and tumor resection surgery for intramedullary spinal cord tumors. Conversely, IONM was the least recommended in lumbar spinal canal stenosis surgery.
CONCLUSIONS: Spine surgeons in Asia-Pacific countries favored IONM use, indicating widespread routine utilization. Tc-MEP was the predominant modality for IONM, followed by SEPs.