Displaying all 2 publications

Abstract:
Sort:
  1. Silva WFSM, Migliolo L, Silva PS, Lima GMS, Oliveira MDL, Andrade CAS
    Biotechnol Prog, 2025;41(1):e3510.
    PMID: 39324859 DOI: 10.1002/btpr.3510
    Healthcare-associated infections (HAIs) pose significant challenges to global health due to pathogen complexity and antimicrobial resistance. Biosensors utilizing antimicrobial peptides offer innovative solutions. Hylarana picturata Multiple Active Peptide 1 (Hp-MAP1), derived from Temporin-PTA, exhibits antibacterial properties sourced from the skin secretions of the Malaysian fire-bellied frog. An innovative sensing layer was developed for the electrochemical biorecognition of diverse pathogens: Pseudomonas aeruginosa, Klebsiella pneumoniae, Escherichia coli, and Staphylococcus aureus. Electrochemical impedance spectroscopy differentiated microorganisms based on distinct electrochemical responses. The sensor layer, composed of functionalized multi-walled carbon nanotubes (MWCNTs) associated with Hp-MAP1, exhibited varying levels of charge transfer resistance (RCT) for different microorganisms. Gram-negative species, especially P. aeruginosa, displayed higher RCT values, indicating better impedimetric responses. Excellent LODs were observed for P. aeruginosa (0.60), K. pneumoniae (0.42), E. coli (0.67), and S. aureus (0.59), highlighting the efficacy of the MWCNTs/Hp-MAP1 biosensor in microbial identification. The MWCNTs/Hp-MAP1 biosensor platform presents a promising and effective microbial identification strategy with potential healthcare applications to mitigate HAIs and enhance patient care.
  2. da Silva-Junio AG, Frias IAM, Lima-Neto RG, Migliolo L, E Silva PS, Oliveira MDL, et al.
    J Pharm Biomed Anal, 2022 Jul 15;216:114788.
    PMID: 35525110 DOI: 10.1016/j.jpba.2022.114788
    Bacterial and fungal infections are challenging due to their low susceptibility and resistance to antimicrobial drugs. For this reason, antimicrobial peptides (AMP) emerge as excellent alternatives to overcome these problems. At the same time, their active insertion into the cell wall of microorganisms can be availed for biorecognition applications in biosensing platforms. Temporin-PTA (T-PTA) is an AMP found in the skin secretions of the Malaysian fire frog Hylarana picturata, which presents antibacterial activity against MRSA, Escherichia coli, and Bacillus subtilis. In this work, T-PTA was explored as an innovative sensing layer aiming for the electrochemical differentiation of Klebsiella pneumoniae, Acinetobacter baumannii, Bacillus subtilis, Enterococcus faecalis, Candida albicans, and C. tropicalis based on the structural differences of their membranes. The biosensor was analyzed through electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV). In this approach, the different structural features of each microorganism resulted in different adherence degrees and, therefore, different electrochemical responses. The transducing layer was fabricated by the self-assembling of a 4-mercaptobenzoic acid (MBA) monolayer and gold-capped magnetic nanoparticles (Fe3O4@Au) implemented to improve the electrical signal of the biointeraction. We found that each interaction, expressed in variations of electron transfer resistance and anodic peak current, demonstrated a singular response from which the platform can discriminate all different microorganisms. We found expressive sensitivity towards Gram-negative species, especially K. pneumoniae. A detection limit of 101 CFU.mL-1 and a linear range of 101 to 105 CFU.mL-1 were obtained. The T-PTA biosensor platform is a promising and effective tool for microbial identification.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links