Displaying 1 publication

Abstract:
Sort:
  1. Isa ZM, Schneider GB, Zaharias R, Seabold D, Stanford CM
    Int J Oral Maxillofac Implants, 2006 Mar-Apr;21(2):203-11.
    PMID: 16634490
    PURPOSE: The objective of this study was to test the hypothesis that fluoride-modified titanium surfaces would enhance osteoblast differentiation. Osteoblast growth on a moderately rough etched fluoride-modified titanium surface (alteration in cellular differentiation) was compared to osteoblast growth on the same surface grit-blasted with titanium dioxide. The potential role of nanometer-level alterations on cell shape and subsequent differentiation was then compared.
    MATERIALS AND METHODS: Human embryonic palatal mesenchymal (HEPM) cultures were incubated on the respective surfaces for 1, 3, and 7 days, followed by analysis for cell proliferation, alkaline phosphatase (ALP) -specific activity, and mRNA steady-state expression for bone-related genes (ALP, type I collagen, osteocalcin, bone sialoprotein [BSP] II, Cbfa1, and osterix) by real-time polymerase chain reaction (PCR).
    RESULTS: The different surfaces did not alter the mRNA expression for ALP, type I collagen, osterix, osteocalcin, or BSP II. However, Cbfa1 expression on the fluoride-modified titanium surface was significantly higher (P < .001) at 1 week. The number of cells on this surface was 20% lower than the number of cells on the surface TiO2-blasted with 25-microm particles but not significantly different from the number of cells on the surface TiO2-blasted with 125-microm particles. Cells grown on all the titanium surfaces expressed similar levels of ALP activity.
    CONCLUSIONS: The results indicated that a fluoride-modified surface topography, in synergy with surface roughness, may have a greater influence on the level of expression of Cbfa1 (a key regulator for osteogenesis) than the unmodified titanium surfaces studied.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links