Displaying all 3 publications

Abstract:
Sort:
  1. Islam F, Bepary S, Nafady MH, Islam MR, Emran TB, Sultana S, et al.
    Oxid Med Cell Longev, 2022;2022:8741787.
    PMID: 36046682 DOI: 10.1155/2022/8741787
    A spinal cord injury (SCI) occurs when the spinal cord is deteriorated or traumatized, leading to motor and sensory functions lost even totally or partially. An imbalance within the generation of reactive oxygen species and antioxidant defense levels results in oxidative stress (OS) and neuroinflammation. After SCI, OS and occurring pathways of inflammations are significant strenuous drivers of cross-linked dysregulated pathways. It emphasizes the significance of multitarget therapy in combating SCI consequences. Polyphenols, which are secondary metabolites originating from plants, have the promise to be used as alternative therapeutic agents to treat SCI. Secondary metabolites have activity on neuroinflammatory, neuronal OS, and extrinsic axonal dysregulated pathways during the early stages of SCI. Experimental and clinical investigations have noted the possible importance of phenolic compounds as important phytochemicals in moderating upstream dysregulated OS/inflammatory signaling mediators and axonal regeneration's extrinsic pathways after the SCI probable significance of phenolic compounds as important phytochemicals in mediating upstream dysregulated OS/inflammatory signaling mediators. Furthermore, combining polyphenols could be a way to lessen the effects of SCI.
  2. Abdel-Sattar OE, Allam RM, Al-Abd AM, El-Halawany AM, El-Desoky AM, Mohamed SO, et al.
    ACS Omega, 2023 Aug 08;8(31):28563-28576.
    PMID: 37576627 DOI: 10.1021/acsomega.3c02953
    Doxorubicin (DOX) is a cornerstone chemotherapeutic agent for the treatment of several malignancies such as breast cancer; however, its activity is ameliorated by the development of a resistant phenotype. Phyllanthus species have been studied previously for their potential anticancer properties. The current work is aimed to study the potential cytotoxicity and chemomodulatory effects of hypophyllanthin (PN4) and phyllanthin (PN5) isolated from Phyllanthus niruri to DOX against the adriamycin multidrug-resistant breast cancer cells (MCF-7ADR) and elucidate their mechanism of action. The major compounds of the active methylene chloride fraction were isolated and assessed for their potential cytotoxicity and chemomodulatory effects on DOX against naïve (MCF-7) and resistant breast (MCF-7ADR) cancer cells. The mechanism of action of both compounds in terms of their impacts on programmed/non-programmed cell death (apoptosis and autophagy/necrosis), cell cycle progression/arrest, and tumor cell migration/invasion was investigated. Both compounds PN4 and PN5 showed a moderate but similar potency against MCF-7 as well as MCF-7ADR and significantly synergized DOX-induced anticancer properties against MCF-7ADR. The chemomodulatory effect of both compounds to DOX was found to be via potentiating DOX-induced cell cycle interference and apoptosis induction. It was found that PN4 and PN5 blocked the apoptosis-escape autophagy pathway in MCF-7ADR. On the molecular level, both compounds interfered with SIRT1 expression and consequently suppressed Akt phosphorylation, and PN5 blocked apoptosis escape. Furthermore, PN4 and PN5 showed promising antimigratory and anti-invasive effects against MCF-7ADR, as confirmed by suppression of N-cadherin/β-catenin expression. In conclusion, for the first time, hypophyllanthin and phyllanthin isolated from P. niruri showed promising chemomodulatory effects to the DOX-induced chemotherapeutic activity against MCF-7ADR. Both compounds significantly synergized DOX-induced anticancer properties against MCF-7ADR. This enhanced activity was explained by further promoting DOX-induced apoptosis and suppressing the apoptosis-escape autophagy feature of the resistant breast cancer cells. Both compounds (hypophyllanthin and phyllanthin) interfered with the SIRT1/Akt pathway and suppressed the N-cadherin/β-catenin axis, confirming the observed antiproliferative, cytotoxic, and anti-invasive effects of hypophyllanthin and phyllanthin.
  3. Mitra S, Muni M, Shawon NJ, Das R, Emran TB, Sharma R, et al.
    Oxid Med Cell Longev, 2022;2022:7252882.
    PMID: 36035218 DOI: 10.1155/2022/7252882
    Tacrine is a drug used in the treatment of Alzheimer's disease as a cognitive enhancer and inhibitor of the enzyme acetylcholinesterase (AChE). However, its clinical application has been restricted due to its poor therapeutic efficacy and high prevalence of detrimental effects. An attempt was made to understand the molecular mechanisms that underlie tacrine and its analogues influence over neurotherapeutic activity by focusing on modulation of neurogenesis, neuroinflammation, endoplasmic reticulum stress, apoptosis, and regulatory role in gene and protein expression, energy metabolism, Ca2+ homeostasis modulation, and osmotic regulation. Regardless of this, analogues of tacrine are considered as a model inhibitor of cholinesterase in the therapy of Alzheimer's disease. The variety both in structural make-up and biological functions of these substances is the main appeal for researchers' interest in them. A new paradigm for treating neurological diseases is presented in this review, which includes treatment strategies for Alzheimer's disease, as well as other neurological disorders like Parkinson's disease and the synthesis and biological properties of newly identified versatile tacrine analogues and hybrids. We have also shown that these analogues may have therapeutic promise in the treatment of neurological diseases in a variety of experimental systems.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links