Filamentous fungi such as Fusarium equiseti KR706303 and Penicillium citrinum KR706304
are capable of sequestering heavy metals from aqueous solutions. In the present study, the role
play by various functional groups present in the cell wall of F. equiseti KR706303 and P.
citrinum KR706304 during lead and copper ions biosorption was investigated. The fungal
biomass was chemically treated to modify the functional groups present in their cell wall. These
modifications were studied through biosorption experiments. It was found that an esterification
of the carboxyl and phosphate groups, methylation of the amine groups and extraction of lipids
significantly decrease the biosorption of both lead and copper ions studied. Therefore, the
carbonyl, hydroxyl and amide groups were recognized as important in the biosorption of metal
ions by the tested fungi. The study showed that there was no release of any metal ions from the
biomass after biosorption, indicating that ion exchange may not be a key mechanism in the
biosorption of lead and copper ions by these fungi but complexation of metal ions within the
fungal cell wall.
The future prospect in wastewater treatment technologies mostly emphasizes processing efficiency and the economic benefits. Undeniably, the use of advanced oxidation processes in physical and chemical treatments has played a vital role in helping the technologies to remove the organic pollutants efficiently and reduce the energy consumption or even harvesting the electrons movements in the oxidation process to produce electrical energy. In the present paper, we review several types of wastewater treatment technologies, namely micro-nanobubbles, hybrid electro-Fenton processes, photocatalytic fuel cells, and microbial fuel cells. The aims are to explore the interaction of hydroxyl radicals with pollutants using these wastewater technologies, including their removal efficiencies, optimal conditions, reactor setup, and energy generation. Despite these technologies recording high removal efficiency of organic pollutants, the selection of the technologies is dependent on the characteristics of the wastewater and the daily production volume. Hence the review paper also provides comparisons between technologies as the guidance in technology selection.
Reactions of [Rh(κ(2) -O,O-acac)(PMe3 )2 ] (acac=acetylacetonato) and α,ω-bis(arylbutadiynyl)alkanes afford two isomeric types of MC4 metallacycles with very different photophysical properties. As a result of a [2+2] reductive coupling at Rh, 2,5-bis(arylethynyl)rhodacyclopentadienes (A) are formed, which display intense fluorescence (Φ=0.07-0.54, τ=0.2-2.5 ns) despite the presence of the heavy metal atom. Rhodium biphenyl complexes (B), which show exceptionally long-lived (hundreds of μs) phosphorescence (Φ=0.01-0.33) at room temperature in solution, have been isolated as a second isomer originating from an unusual [4+2] cycloaddition reaction and a subsequent β-H-shift. We attribute the different photophysical properties of isomers A and B to a higher excited state density and a less stabilized T1 state in the biphenyl complexes B, allowing for more efficient intersystem crossing S1 →Tn and T1 →S0 . Control of the isomer distribution is achieved by modification of the bis- (diyne) linker length, providing a fundamentally new route to access photoactive metal biphenyl compounds.