Dengue, a mosquito-borne viral infectious disease, causes a high morbidity and mortality in tropical and subtropical areas of the world. In Nepal, the first case of dengue was reported in 2004 followed by frequent outbreaks in subsequent years, with the largest being in 2019 taking the death toll of six. It is reported that the number of dengue fever cases are soaring in Nepal spreading from the plains to more hilly regions. This might have serious public health implications in the future when combined with other factors, such as: global warming, lack of early detection and treatment of dengue, lack of diagnostic facilities, poor healthcare systems and mosquito control strategies. Nepal, thus, needs a cost-effective mosquito control strategy for the prevention and control of dengue. The Wolbachia-mediated biological method of the dengue control strategy is novel, economic, and environment-friendly. It has been successfully trialed in several areas of dengue-prone countries of the world, including Australia, Malaysia, Vietnam etc. resulting in significant reductions in dengue incidence. Given the lack of effective vector control strategy and weak economic condition of the country along with the persistence of climate and environment conditions that favors the host (Aedes mosquito) for Wolbachia, this approach can be a promising option to control dengue in Nepal.
Information on tropical Asian vertebrates has traditionally been sparse, particularly when it comes to cryptic species inhabiting the dense forests of the region. Vertebrate populations are declining globally due to land-use change and hunting, the latter frequently referred as "defaunation." This is especially true in tropical Asia where there is extensive land-use change and high human densities. Robust monitoring requires that large volumes of vertebrate population data be made available for use by the scientific and applied communities. Camera traps have emerged as an effective, non-invasive, widespread, and common approach to surveying vertebrates in their natural habitats. However, camera-derived datasets remain scattered across a wide array of sources, including published scientific literature, gray literature, and unpublished works, making it challenging for researchers to harness the full potential of cameras for ecology, conservation, and management. In response, we collated and standardized observations from 239 camera trap studies conducted in tropical Asia. There were 278,260 independent records of 371 distinct species, comprising 232 mammals, 132 birds, and seven reptiles. The total trapping effort accumulated in this data paper consisted of 876,606 trap nights, distributed among Indonesia, Singapore, Malaysia, Bhutan, Thailand, Myanmar, Cambodia, Laos, Vietnam, Nepal, and far eastern India. The relatively standardized deployment methods in the region provide a consistent, reliable, and rich count data set relative to other large-scale pressence-only data sets, such as the Global Biodiversity Information Facility (GBIF) or citizen science repositories (e.g., iNaturalist), and is thus most similar to eBird. To facilitate the use of these data, we also provide mammalian species trait information and 13 environmental covariates calculated at three spatial scales around the camera survey centroids (within 10-, 20-, and 30-km buffers). We will update the dataset to include broader coverage of temperate Asia and add newer surveys and covariates as they become available. This dataset unlocks immense opportunities for single-species ecological or conservation studies as well as applied ecology, community ecology, and macroecology investigations. The data are fully available to the public for utilization and research. Please cite this data paper when utilizing the data.