Displaying all 3 publications

Abstract:
Sort:
  1. Kumbargere Nagraj S, Eachempati P, Paisi M, Nasser M, Sivaramakrishnan G, Francis T, et al.
    Cochrane Database Syst Rev, 2022 Aug 22;8(8):CD013826.
    PMID: 35994295 DOI: 10.1002/14651858.CD013826.pub2
    BACKGROUND: Aerosols and spatter are generated in a dental clinic during aerosol-generating procedures (AGPs) that use high-speed hand pieces. Dental healthcare providers can be at increased risk of transmission of diseases such as tuberculosis, measles and severe acute respiratory syndrome (SARS) through droplets on mucosae, inhalation of aerosols or through fomites on mucosae, which harbour micro-organisms. There are ways to mitigate and contain spatter and aerosols that may, in turn, reduce any risk of disease transmission. In addition to personal protective equipment (PPE) and aerosol-reducing devices such as high-volume suction, it has been hypothesised that the use of mouth rinse by patients before dental procedures could reduce the microbial load of aerosols that are generated during dental AGPs.

    OBJECTIVES: To assess the effects of preprocedural mouth rinses used in dental clinics to minimise incidence of infection in dental healthcare providers and reduce or neutralise contamination in aerosols.

    SEARCH METHODS: We used standard, extensive Cochrane search methods. The latest search date was 4 February 2022.

    SELECTION CRITERIA: We included randomised controlled trials and excluded laboratory-based studies. Study participants were dental patients undergoing AGPs. Studies compared any preprocedural mouth rinse used to reduce contaminated aerosols versus placebo, no mouth rinse or another mouth rinse. Our primary outcome was incidence of infection of dental healthcare providers and secondary outcomes were reduction in the level of contamination of the dental operatory environment, cost, change in mouth microbiota, adverse events, and acceptability and feasibility of the intervention.

    DATA COLLECTION AND ANALYSIS: Two review authors screened search results, extracted data from included studies, assessed the risk of bias in the studies and judged the certainty of the available evidence. We used mean differences (MDs) and 95% confidence intervals (CIs) as the effect estimate for continuous outcomes, and random-effects meta-analysis to combine data  MAIN RESULTS:  We included 17 studies with 830 participants aged 18 to 70 years. We judged three trials at high risk of bias, two at low risk and 12 at unclear risk of bias.  None of the studies measured our primary outcome of the incidence of infection in dental healthcare providers.  The primary outcome in the studies was reduction in the level of bacterial contamination measured in colony-forming units (CFUs) at distances of less than 2 m (intended to capture larger droplets) and 2 m or more (to capture droplet nuclei from aerosols arising from the participant's oral cavity). It is unclear what size of CFU reduction represents a clinically significant amount. There is low- to very low-certainty evidence that chlorhexidine (CHX) may reduce bacterial contamination, as measured by CFUs, compared with no rinsing or rinsing with water. There were similar results when comparing cetylpyridinium chloride (CPC) with no rinsing and when comparing CPC, essential oils/herbal mouthwashes or boric acid with water. There is very low-certainty evidence that tempered mouth rinses may provide a greater reduction in CFUs than cold mouth rinses. There is low-certainty evidence that CHX may reduce CFUs more than essential oils/herbal mouthwashes. The evidence for other head-to-head comparisons was limited and inconsistent.  The studies did not provide any information on costs, change in micro-organisms in the patient's mouth or adverse events such as temporary discolouration, altered taste, allergic reaction or hypersensitivity. The studies did not assess acceptability of the intervention to patients or feasibility of implementation for dentists.  AUTHORS' CONCLUSIONS: None of the included studies measured the incidence of infection among dental healthcare providers. The studies measured only reduction in level of bacterial contamination in aerosols. None of the studies evaluated viral or fungal contamination. We have only low to very low certainty for all findings. We are unable to draw conclusions regarding whether there is a role for preprocedural mouth rinses in reducing infection risk or the possible superiority of one preprocedural rinse over another. Studies are needed that measure the effect of rinses on infectious disease risk among dental healthcare providers and on contaminated aerosols at larger distances with standardised outcome measurement.

  2. Kumbargere Nagraj S, Eachempati P, Paisi M, Nasser M, Sivaramakrishnan G, Verbeek JH
    Cochrane Database Syst Rev, 2020 Oct 12;10(10):CD013686.
    PMID: 33047816 DOI: 10.1002/14651858.CD013686.pub2
    BACKGROUND: Many dental procedures produce aerosols (droplets, droplet nuclei and splatter) that harbour various pathogenic micro-organisms and may pose a risk for the spread of infections between dentist and patient. The COVID-19 pandemic has led to greater concern about this risk.

    OBJECTIVES: To assess the effectiveness of methods used during dental treatment procedures to minimize aerosol production and reduce or neutralize contamination in aerosols.

    SEARCH METHODS: Cochrane Oral Health's Information Specialist searched the following databases on 17 September 2020: Cochrane Oral Health's Trials Register, the Cochrane Central Register of Controlled Trials (CENTRAL) (in the Cochrane Library, 2020, Issue 8), MEDLINE Ovid (from 1946); Embase Ovid (from 1980); the WHO COVID-19 Global literature on coronavirus disease; the US National Institutes of Health Trials Registry (ClinicalTrials.gov); and the Cochrane COVID-19 Study Register. We placed no restrictions on the language or date of publication.

    SELECTION CRITERIA: We included randomized controlled trials (RCTs) and controlled clinical trials (CCTs) on aerosol-generating procedures (AGPs) performed by dental healthcare providers that evaluated methods to reduce contaminated aerosols in dental clinics (excluding preprocedural mouthrinses). The primary outcomes were incidence of infection in dental staff or patients, and reduction in volume and level of contaminated aerosols in the operative environment. The secondary outcomes were cost, accessibility and feasibility.

    DATA COLLECTION AND ANALYSIS: Two review authors screened search results, extracted data from the included studies, assessed the risk of bias in the studies, and judged the certainty of the available evidence. We used mean differences (MDs) and 95% confidence intervals (CIs) as the effect estimate for continuous outcomes, and random-effects meta-analysis to combine data. We assessed heterogeneity.

    MAIN RESULTS: We included 16 studies with 425 participants aged 5 to 69 years. Eight studies had high risk of bias; eight had unclear risk of bias. No studies measured infection. All studies measured bacterial contamination using the surrogate outcome of colony-forming units (CFU). Two studies measured contamination per volume of air sampled at different distances from the patient's mouth, and 14 studies sampled particles on agar plates at specific distances from the patient's mouth. The results presented below should be interpreted with caution as the evidence is very low certainty due to heterogeneity, risk of bias, small sample sizes and wide confidence intervals. Moreover, we do not know the 'minimal clinically important difference' in CFU. High-volume evacuator Use of a high-volume evacuator (HVE) may reduce bacterial contamination in aerosols less than one foot (~ 30 cm) from a patient's mouth (MD -47.41, 95% CI -92.76 to -2.06; 3 RCTs, 122 participants (two studies had split-mouth design); very high heterogeneity I² = 95%), but not at longer distances (MD -1.00, -2.56 to 0.56; 1 RCT, 80 participants). One split-mouth RCT (six participants) found that HVE may not be more effective than conventional dental suction (saliva ejector or low-volume evacuator) at 40 cm (MD CFU -2.30, 95% CI -5.32 to 0.72) or 150 cm (MD -2.20, 95% CI -14.01 to 9.61). Dental isolation combination system One RCT (50 participants) found that there may be no difference in CFU between a combination system (Isolite) and a saliva ejector (low-volume evacuator) during AGPs (MD -0.31, 95% CI -0.82 to 0.20) or after AGPs (MD -0.35, -0.99 to 0.29). However, an 'n of 1' design study showed that the combination system may reduce CFU compared with rubber dam plus HVE (MD -125.20, 95% CI -174.02 to -76.38) or HVE (MD -109.30, 95% CI -153.01 to -65.59). Rubber dam One split-mouth RCT (10 participants) receiving dental treatment, found that there may be a reduction in CFU with rubber dam at one-metre (MD -16.20, 95% CI -19.36 to -13.04) and two-metre distance (MD -11.70, 95% CI -15.82 to -7.58). One RCT of 47 dental students found use of rubber dam may make no difference in CFU at the forehead (MD 0.98, 95% CI -0.73 to 2.70) and occipital region of the operator (MD 0.77, 95% CI -0.46 to 2.00). One split-mouth RCT (21 participants) found that rubber dam plus HVE may reduce CFU more than cotton roll plus HVE on the patient's chest (MD -251.00, 95% CI -267.95 to -234.05) and dental unit light (MD -12.70, 95% CI -12.85 to -12.55). Air cleaning systems One split-mouth CCT (two participants) used a local stand-alone air cleaning system (ACS), which may reduce aerosol contamination during cavity preparation (MD -66.70 CFU, 95% CI -120.15 to -13.25 per cubic metre) or ultrasonic scaling (MD -32.40, 95% CI - 51.55 to -13.25). Another CCT (50 participants) found that laminar flow in the dental clinic combined with a HEPA filter may reduce contamination approximately 76 cm from the floor (MD -483.56 CFU, 95% CI -550.02 to -417.10 per cubic feet per minute per patient) and 20 cm to 30 cm from the patient's mouth (MD -319.14 CFU, 95% CI - 385.60 to -252.68). Disinfectants ‒ antimicrobial coolants Two RCTs evaluated use of antimicrobial coolants during ultrasonic scaling. Compared with distilled water, coolant containing chlorhexidine (CHX), cinnamon extract coolant or povidone iodine may reduce CFU: CHX (MD -124.00, 95% CI -135.78 to -112.22; 20 participants), povidone iodine (MD -656.45, 95% CI -672.74 to -640.16; 40 participants), cinnamon (MD -644.55, 95% CI -668.70 to -620.40; 40 participants). CHX coolant may reduce CFU more than povidone iodine (MD -59.30, 95% CI -64.16 to -54.44; 20 participants), but not more than cinnamon extract (MD -11.90, 95% CI -35.88 to 12.08; 40 participants).

    AUTHORS' CONCLUSIONS: We found no studies that evaluated disease transmission via aerosols in a dental setting; and no evidence about viral contamination in aerosols. All of the included studies measured bacterial contamination using colony-forming units. There appeared to be some benefit from the interventions evaluated but the available evidence is very low certainty so we are unable to draw reliable conclusions. We did not find any studies on methods such as ventilation, ionization, ozonisation, UV light and fogging. Studies are needed that measure contamination in aerosols, size distribution of aerosols and infection transmission risk for respiratory diseases such as COVID-19 in dental patients and staff.

Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links