The industrial revolution and urbanization fundamentally restructured populations' living circumstances, often with poor impacts on health. As an example, unhealthy food establishments may concentrate in some neighborhoods and, mediated by social and commercial drivers, increase local health risks. To understand the connections between neighborhood food environments and public health, researchers often use geographic information systems (GIS) and spatial statistics to analyze place-based evidence, but such tools require careful application and interpretation. In this article, we summarize the factors shaping neighborhood health in relation to local food environments and outline the use of GIS methodologies to assess associations between the two. We provide an overview of available data sources, analytical approaches, and their strengths and weaknesses. We postulate next steps in GIS integration with forecasting, prediction, and simulation measures to frame implications for local health policies. Expected final online publication date for the Annual Review of Public Health, Volume 45 is April 2024. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Accurate assessments of epidemiological associations between health outcomes and routinely observed proximal and distal determinants of health are fundamental for the execution of effective public health interventions and policies. Methods to couple big public health data with modern statistical techniques offer greater granularity for describing and understanding data quality, disease distributions, and potential predictive connections between population-level indicators with areal-based health outcomes. This study applied clustering techniques to explore patterns of diabetes burden correlated with local socio-economic inequalities in Malaysia, with a goal of better understanding the factors influencing the collation of these clusters. Through multi-modal secondary data sources, district-wise diabetes crude rates from 271,553 individuals with diabetes sampled from 914 primary care clinics throughout Malaysia were computed. Unsupervised machine learning methods using hierarchical clustering to a set of 144 administrative districts was applied. Differences in characteristics of the areas were evaluated using multivariate non-parametric test statistics. Five statistically significant clusters were identified, each reflecting different levels of diabetes burden at the local level, each with contrasting patterns observed under the influence of population-level characteristics. The hierarchical clustering analysis that grouped local diabetes areas with varying socio-economic, demographic, and geographic characteristics offer opportunities to local public health to implement targeted interventions in an attempt to control the local diabetes burden.