Displaying all 3 publications

Abstract:
Sort:
  1. Li S, Li W, Cheng Y, Liu J, Wei G, Wang B
    Biodivers Data J, 2024;12:e113427.
    PMID: 38235166 DOI: 10.3897/BDJ.12.e113427
    BACKGROUND: The Asian leaf litter toads of the genus Leptobrachella Smith, 1925 (Anura, Megophryidae) inhabit the forest floor and rocky streams in hilly evergreen forests and are widely distributed from southern China, west to north-eastern India and Myanmar, through mainland Indochina to Peninsular Malaysia and the Island of Borneo.

    NEW INFORMATION: A new species of the Asian leaf litter toad genus Leptobrachella from Guizhou Province, China is described. Molecular phylogenetic analyses, based on mitochondrial 16S rRNA and COI genes and nuclear RAG1 gene sequences indicated that the new species is genetically divergent from its congeners. The new species could be distinguished from its congeners by a combination of the following characters: (1) body of medium size in males (SVL 31.9 - 32.9 mm); (2) distinct black spots present on flanks; (3) toes rudimentarily webbed, with wide lateral fringes; (4) skin on dorsum shagreened with fine tiny granules and short ridges; (5) heels overlapped when thighs are positioned at right angles to the body; (6) tibia-tarsal articulation reaching interior corner of the eye.A new species of the Asian leaf litter toad genus Leptobrachella from Guizhou Province, China is described. Molecular phylogenetic analyses, based on mitochondrial 16S rRNA and COI genes and nuclear RAG1 gene sequences indicated that the new species is genetically divergent from its congeners. The new species could be distinguished from its congeners by a combination of the following characters: (1) body of medium size in males (SVL 31.9 - 32.9 mm); (2) distinct black spots present on flanks; (3) toes rudimentarily webbed, with wide lateral fringes; (4) skin on dorsum shagreened with fine tiny granules and short ridges; (5) heels overlapped when thighs are positioned at right angles to the body; (6) tibia-tarsal articulation reaching interior corner of the eye.

  2. Jung S, Cheung WL, Li SJ, Wang M, Li W, Wang C, et al.
    Nat Commun, 2023 Oct 14;14(1):6481.
    PMID: 37838720 DOI: 10.1038/s41467-023-42019-6
    The realization of operationally stable blue organic light-emitting diodes is a challenging issue across the field. While device optimization has been a focus to effectively prolong device lifetime, strategies based on molecular engineering of chemical structures, particularly at the subatomic level, remains little. Herein, we explore the effect of targeted deuteration on donor and/or acceptor units of thermally activated delayed fluorescence emitters and investigate the structure-property relationship between intrinsic molecular stability, based on isotopic effect, and device operational stability. We show that the deuteration of the acceptor unit is critical to enhance the photostability of thermally activated delayed fluorescence compounds and hence device lifetime in addition to that of the donor units, which is commonly neglected due to the limited availability and synthetic complexity of deuterated acceptors. Based on these isotopic analogues, we observe a gradual increase in the device operational stability and achieve the long-lifetime time to 90% of the initial luminance of 23.4 h at the luminance of 1000 cd m-2 for thermally activated delayed fluorescence-sensitized organic light-emitting diodes. We anticipate our strategic deuteration approach provides insights and demonstrates the importance on structural modification materials at a subatomic level towards prolonging the device operational stability.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links