Displaying all 3 publications

Abstract:
Sort:
  1. Phan MD, Nhu NTK, Achard MES, Forde BM, Hong KW, Chong TM, et al.
    J Antimicrob Chemother, 2017 10 01;72(10):2729-2736.
    PMID: 29091192 DOI: 10.1093/jac/dkx204
    Objectives: Polymyxins remain one of the last-resort drugs to treat infections caused by MDR Gram-negative pathogens. Here, we determined the mechanisms by which chromosomally encoded resistance to colistin and polymyxin B can arise in the MDR uropathogenic Escherichia coli ST131 reference strain EC958.

    Methods: Two complementary approaches, saturated transposon mutagenesis and spontaneous mutation induction with high concentrations of colistin and polymyxin B, were employed to select for mutations associated with resistance to polymyxins. Mutants were identified using transposon-directed insertion-site sequencing or Illumina WGS. A resistance phenotype was confirmed by MIC and further investigated using RT-PCR. Competitive growth assays were used to measure fitness cost.

    Results: A transposon insertion at nucleotide 41 of the pmrB gene (EC958pmrB41-Tn5) enhanced its transcript level, resulting in a 64- and 32-fold increased MIC of colistin and polymyxin B, respectively. Three spontaneous mutations, also located within the pmrB gene, conferred resistance to both colistin and polymyxin B with a corresponding increase in transcription of the pmrCAB genes. All three mutations incurred a fitness cost in the absence of colistin and polymyxin B.

    Conclusions: This study identified the pmrB gene as the main chromosomal target for induction of colistin and polymyxin B resistance in E. coli.

  2. Chang AB, Yerkovich ST, Baines KJ, Burr L, Champion A, Chatfield MD, et al.
    BMJ Open Respir Res, 2024 May 07;11(1).
    PMID: 38719503 DOI: 10.1136/bmjresp-2023-002216
    INTRODUCTION: Bronchiectasis is a worldwide chronic lung disorder where exacerbations are common. It affects people of all ages, but especially Indigenous populations in high-income nations. Despite being a major contributor to chronic lung disease, there are no licensed therapies for bronchiectasis and there remain relatively few randomised controlled trials (RCTs) conducted in children and adults. Our RCT will address some of these unmet needs by evaluating whether the novel mucoactive agent, erdosteine, has a therapeutic role in children and adults with bronchiectasis.Our primary aim is to determine in children and adults aged 2-49 years with bronchiectasis whether regular erdosteine over a 12-month period reduces acute respiratory exacerbations compared with placebo. Our primary hypothesis is that people with bronchiectasis who regularly use erdosteine will have fewer exacerbations than those receiving placebo.Our secondary aims are to determine the effect of the trial medications on quality of life (QoL) and other clinical outcomes (exacerbation duration, time-to-next exacerbation, hospitalisations, lung function, adverse events). We will also assess the cost-effectiveness of the intervention.

    METHODS AND ANALYSIS: We are undertaking an international multicentre, double-blind, placebo-RCT to evaluate whether 12 months of erdosteine is beneficial for children and adults with bronchiectasis. We will recruit 194 children and adults with bronchiectasis to a parallel, superiority RCT at eight sites across Australia, Malaysia and Philippines. Our primary endpoint is the rate of exacerbations over 12 months. Our main secondary outcomes are QoL, exacerbation duration, time-to-next exacerbation, hospitalisations and lung function.

    ETHICS AND DISSEMINATION: The Human Research Ethics Committees (HREC) of Children's Health Queensland (for all Australian sites), University of Malaya Medical Centre (Malaysia) and St. Luke's Medical Centre (Philippines) approved the study. We will publish the results and share the outcomes with the academic and medical community, funding and relevant patient organisations.

    TRIAL REGISTRATION NUMBER: ACTRN12621000315819.

  3. Ang CW, Tan L, Qu Z, West NP, Cooper MA, Popat A, et al.
    ACS Biomater Sci Eng, 2022 Oct 10;8(10):4196-4206.
    PMID: 34464089 DOI: 10.1021/acsbiomaterials.1c00807
    Pretomanid and MCC7433, a novel nitroimidazopyrazinone analog, are promising antitubercular agents that belong to the bicyclic nitroimidazole family. Despite possessing high cell permeability, they suffer from poor aqueous solubility and require specialized formulations in order to be orally bioavailable. To address this limitation, we investigated the use of mesoporous silica nanoparticles (MCM-41) as drug carriers. MCM-41 nanoparticles were synthesized using a sol-gel method, and their surface was further modified with amine and phosphonate groups. A simple rotary evaporation method was used to incorporate the compounds of interest into the nanoparticles, leading to a high encapsulation efficiency of ≥86% with ∼10% loading (w/w). An overall significant improvement of solubility was also observed, and the pharmacological activity of pretomanid and MCC7433 was fully retained when tested in vitro against Mycobacterium tuberculosis using these nanocarriers. Amino-functionalized MCM-41 nanoparticles were found to enhance the systemic exposure of MCC7433 in mice (1.3-fold higher Cmax) compared to MCC7433 alone. The current work highlights the potential of using nanoparticles such as mesoporous silica as a carrier for oral delivery of poorly soluble antibacterial agents against tuberculosis.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links