Displaying all 2 publications

Abstract:
Sort:
  1. Hamid N, Junaid M, Sultan M, Yoganandham ST, Chuan OM
    Water Res, 2024 Feb 15;250:121044.
    PMID: 38154338 DOI: 10.1016/j.watres.2023.121044
    Due to increasing regulations on the production and consumption of legacy per- and polyfluoroalkyl substances (PFAS), the global use of PFAS substitutes increased tremendously, posing serious environmental risks owing to their bioaccumulation, toxicity, and lack of removal strategies. This review summarized the spatial distribution of alternative PFAS and their ecological risks in global freshwater and marine ecosystems. Further, toxicological effects of novel PFAS in various freshwater and marine species were highlighted. Moreover, degradation mechanisms for alternative PFAS removal from aquatic environments were compared and discussed. The spatial distribution showed that 6:2 chlorinated polyfluorinated ether sulfonate (6:2 CI-PFAES, also known as F-53B) was the most dominant emerging PFAS found in freshwater. Additionally, the highest levels of PFBS and PFBA were observed in marine waters (West Pacific Ocean). Moreover, short-chain PFAS exhibited higher concentrations than long-chain congeners. The ecological risk quotients (RQs) for phytoplankton were relatively higher >1 than invertebrates, indicating a higher risk for freshwater phytoplankton species. Similarly, in marine water, the majority of PFAS substitutes exhibited negligible risk for invertebrates and fish, and posed elevated risks for phytoplanktons. Reviewed studies showed that alternative PFAS undergo bioaccumulation and cause deleterious effects such as oxidative stress, hepatoxicity, neurotoxicity, histopathological alterations, behavioral and growth abnormalities, reproductive toxicity and metabolism defects in freshwater and marine species. Regarding PFAS treatment methods, photodegradation, photocatalysis, and adsorption showed promising degradation approaches with efficiencies as high as 90%. Finally, research gaps and future perspectives for alternative PFAS toxicological implications and their removal were offered.
  2. Renuka RR, Julius A, Yoganandham ST, Umapathy D, Ramadoss R, Samrot AV, et al.
    Front Endocrinol (Lausanne), 2022;13:1074568.
    PMID: 36714604 DOI: 10.3389/fendo.2022.1074568
    Wound healing is a programmed process of continuous events which is impaired in the case of diabetic patients. This impaired process of healing in diabetics leads to amputation, longer hospitalisation, immobilisation, low self-esteem, and mortality in some patients. This problem has paved the way for several innovative strategies like the use of nanotechnology for the treatment of wounds in diabetic patients. The use of biomaterials, nanomaterials have advanced approaches in tissue engineering by designing multi-functional nanocomposite scaffolds. Stimuli-responsive scaffolds that interact with the wound microenvironment and controlled release of bioactive molecules have helped in overcoming barriers in healing. The use of different types of nanocomposite scaffolds for faster healing of diabetic wounds is constantly being studied. Nanocomposites have helped in addressing specific issues with respect to healing and improving angiogenesis. Method: A literature search was followed to retrieve the articles on strategies for wound healing in diabetes across several databases like PubMed, EMBASE, Scopus and Cochrane database. The search was performed in May 2022 by two researchers independently. They keywords used were "diabetic wounds, nanotechnology, nanocomposites, nanoparticles, chronic diabetic wounds, diabetic foot ulcer, hydrogel". Exclusion criteria included insulin resistance, burn wound, dressing material.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links