Displaying 1 publication

Abstract:
Sort:
  1. Iqbal MA, Younis MW, Maqbool M, Goh HH, Kurniawan TA, Amjad M, et al.
    Int J Biol Macromol, 2024 Dec 13.
    PMID: 39675599 DOI: 10.1016/j.ijbiomac.2024.138775
    In this study, we present a groundbreaking approach utilizing metal-free, visible light-mediated organic photoredox catalyzed atom transfer radical polymerization (O-ATRP) to synthesize cellulose-based stimuli-responsive polymers. Our method resulted in the successful synthesis of innovative metal-free poly(N-tertiary-butylacrylamide)-graft-hydroxypropyl cellulose (PNTBAM-g-HPC) polymers with exceptional control over molecular weight and narrow dispersity index (Đ) and explored their applications in organo-photocatalytic reactions. This approach addresses the limitations of traditional atom transfer radical polymerization method, which suffer from metal contamination and toxicity related problems. O-ATRP and organic photoredox catalysts have been sought to address these difficult challenges. In this study, we synthesized organic compound; 2,4,5,6-tetrakis(diphenylamino)isophthalonitrile (4DPIPN), which served as an organic photoredox catalyst, enabling the synthesis and application study of PNTBAM-g-HPC polymers via organic photoredox catalysis. Furthermore, by employing 4DPIPN, three different types of PNTBAM-g-HPC polymers were synthesized. Through thorough characterization techniques including FTIR, NMR, UV/Visible spectroscopy, TGA, and GPC analysis, we confirmed the successful synthesis of photocatalyst and three different types of PNTBAM-g-HPC polymers under O-ATRP conditions. By adjusting the molar ratios of PNTBAM side chains, we fine-tuned the LCST of HTA-20 polymers to 37.3 °C, demonstrating their thermoresponsive behavior. This synthetic approach shows great potential for applications in biosensors, pharmaceuticals, biomedical engineering, and drug delivery systems.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links