Materials and Methods: Twenty-five enamel slabs were divided into three treatment groups: light-activated bleaching, laser-activated bleaching, and control. The baseline data were recorded for enamel microhardness (Vickers microhardness [VMH]) and surface roughness (Roughness average, Ra). The specimens were cured for 10 min upon hydrogen peroxide application for the light-activated bleaching group and activated with a laser source, 8 cycles, 10 s per cycle for the laser-activated group. The changes in VMH and Ra at days 1, 7, and 28 were evaluated. Kruskal-Wallis, Friedman, Wilcoxon, and Mann-Whitney tests were used to analyze both VMH and Ra between the treatment groups at different time intervals.
Results: There were a significant reduction in VMH values and significant differences between days 1, 7, and 28 against the baseline in the light-activated bleaching group (P = 0.001). The Ra values revealed significant differences in both light- (P = 0.001) and laser-activated (P = 0.033) groups.
Conclusion: Light activation of a bleaching agent caused a reduction in enamel microhardness and an increase in surface roughness when compared to laser activation.
Objective: The objective of this study is to determine the antimicrobial effects of MP, AV, and MP + AV in comparison with Ca(OH)2 against E. faecalis, as an intracanal medicament.
Materials and Methods: Antimicrobial activity of MP, AV, MP + AV, Ca(OH)2, and dimethyl sulfoxide was tested against E. faecalis using antimicrobial sensitivity testing, minimum inhibitory concentration (MIC), and minimum bactericidal concentration (MBC). The results were analyzed by Kruskal-Wallis test with Mann-Whitney post hoc test and repeated measures analysis of variance with Bonferroni post hoc test (P < 0.05).
Results: For agar well-diffusion method, MP + AV gave maximum inhibition zone diameter (mean: 8.11 ± 0.015 mm), MP (mean: 6.21 ± 0.046 mm, Ca(OH)2 (mean: 5.5 ± 0.006), and AV (mean: 5.05 ± 0.012) with P < 0.05. MIC for MP + AV was 2 mg/ml, MP at 8 mg/ml, Ca(OH)2 at 8 mg/ml, and AV at 16 mg/ml. The MBC for MP + AV is at 4 mg/ml, MP at 16 mg/ml, Ca(OH)2 at 16 mg/ml, and AV at 32 mg/ml.
Conclusion: The combination of MP and AV consistently showed better antimicrobial activity compared to MP and AV alone against E. faecalis. The findings suggest that MP and AV used in combination may be an ideal intracanal medicament in FET and PET.