Displaying publications 1 - 20 of 49 in total

Abstract:
Sort:
  1. Zolkeflee NKZ, Wong PL, Maulidiani M, Ramli NS, Azlan A, Mediani A, et al.
    Biochem Biophys Res Commun, 2024 May 14;708:149778.
    PMID: 38507867 DOI: 10.1016/j.bbrc.2024.149778
    The increasing prevalence of lean diabetes has prompted the generation of animal models that mimic metabolic disease in humans. This study aimed to determine the optimum streptozotocin-nicotinamide (STZ-NA) dosage ratio to elicit lean diabetic features in a rat model. It also used a proton nuclear magnetic resonance (1H NMR) urinary metabolomics approach to identify the metabolic effect of metformin treatment on this novel rat model. Three different STZ-NA dosage regimens (by body weight: Group A: 110 mg/kg NA and 45 mg/kg STZ; Group B: 180 mg/kg NA and 65 mg/kg STZ and Group C: 120 mg/kg NA and 60 mg/kg STZ) were administered to Sprague-Dawley rats along with oral metformin. Group A diabetic rats (A-DC) showed favorable serum biochemical analyses and a more positive response toward oral metformin administration relative to the other STZ-NA dosage ratio groups. Orthogonal partial least squares-discriminant analysis (OPLS-DA) revealed that glucose, citrate, pyruvate, hippurate, and methylnicotinamide differentiating the OPLS-DA of A-MTF rats (Group A diabetic rats treated with metformin) and A-DC model rats. Subsequent metabolic pathway analyses revealed that metformin treatment was associated with improvement in dysfunctions caused by STZ-NA induction, including carbohydrate metabolism, cofactor metabolism, and vitamin and amino acid metabolism. In conclusion, our results identify the best STZ-NA dosage ratio for a rat model to exhibit lean type 2 diabetic features with optimum sensitivity to metformin treatment. The data presented here could be informative to improve our understanding of non-obese diabetes in humans through the identification of possible activated metabolic pathways in the STZ-NA-induced diabetic rats model.
  2. Zhang Y, Lee S, Xu W
    Biochem Biophys Res Commun, 2020 04 16;524(4):1018-1024.
    PMID: 32063363 DOI: 10.1016/j.bbrc.2020.02.021
    Pten deletion in the hematopoietic stem cells (HSC) causes a myeloproliferative disorder, which may subsequently develop into a T-cell acute lymphoblastic leukemia (T-ALL). β-catenin expression was dramatically increased in the c-KitmidCD3+Lin- leukemia stem cells (LSC) and was critical for T-ALL development. Therefore, the inactivation of β-catenin in LSC may have a potential to eliminate the LSC. In this study, we investigated the mechanism of enhancement of the β-catenin expression and subsequently used a drug to inactivate β-catenin expression in T-ALL. Western blot (WB) analysis revealed an increased level of β-catenin in the leukemic cells, but not in the pre-leukemic cells. Furthermore, the WB analysis of the thymic cells from different stages of leukemia development showed that increased expression of β-catenin was not via the pS9-GSK3β signaling, but was dependent on the pT308-Akt activation. Miltefosine (Hexadecylphosphocholine) is the first oral anti-Leishmania drug, which is a phospholipid agent and has been shown to inhibit the PI3K/Akt activity. Treatment of the PtenΔ/Δ leukemic mice with Miltefosine for different durations demonstrated that the pT308-Akt and the β-catenin expressions were inhibited in the leukemia blast cells. Miltefosine treatment also suppressed the TGFβ1/Smad3 signaling pathway. Analysis of TGFβ1 in the sorted subpopulations of the blast cells showed that TGFβ1 was secreted by the CD3+CD4- subpopulation and may exert effects on the subpopulations of both CD3+CD4+ and CD3+CD4- leukemia blast cells. When a TGFβR1 inhibitor, SB431542 was injected into the PtenΔ/Δ leukemic mice, the Smad3 and β-catenin expressions were down-regulated. On the basis of the results, we conclude that Miltefosine can suppress leukemia by degrading β-catenin through repression of the pT308-Akt and TGFβ1/Smad3 signaling pathways. This study demonstrates a possibility to inhibit Pten loss-associated leukemia genesis via targeting Akt and Smad3.
  3. Zawawi MS, Dharmapatni AA, Cantley MD, McHugh KP, Haynes DR, Crotti TN
    Biochem Biophys Res Commun, 2012 Oct 19;427(2):404-9.
    PMID: 23000414 DOI: 10.1016/j.bbrc.2012.09.077
    Osteoclasts are specialised bone resorptive cells responsible for both physiological and pathological bone loss. Osteoclast differentiation and activity is dependent upon receptor activator NF-kappa-B ligand (RANKL) interacting with its receptor RANK to induce the transcription factor, nuclear factor of activated T-cells, cytoplasmic, calcineurin-dependent 1 (NFATc1). The immunoreceptor tyrosine-based activation motif (ITAM)-dependent pathway has been identified as a co-stimulatory pathway in osteoclasts. Osteoclast-associated receptor (OSCAR) and triggering receptor expressed in myeloid cells (TREM2) are essential receptors that pair with adaptor molecules Fc receptor common gamma chain (FcRγ) and DNAX-activating protein 12kDa (DAP12) respectively to induce calcium signalling. Treatment with calcineurin-NFAT inhibitors, Tacrolimus (FK506) and the 11R-VIVIT (VIVIT) peptide, reduces NFATc1 expression consistent with a reduction in osteoclast differentiation and activity. This study aimed to investigate the effects of inhibiting calcineurin-NFAT signalling on the expression of ITAM factors and late stage osteoclast genes including cathepsin K (CathK), Beta 3 integrin (β3) and Annexin VIII (AnnVIII). Human peripheral blood mononuclear cells (PBMCs) were differentiated with RANKL and macrophage-colony stimulating factor (M-CSF) over 10days in the presence or absence of FK506 or VIVIT. Osteoclast formation (as assessed by tartrate resistant acid phosphatase (TRAP)) and activity (assessed by dentine pit resorption) were significantly reduced with treatment. Quantitative real-time polymerase chain reaction (qRT-PCR) analysis demonstrated that FK506 treatment significantly (p<0.05) reduced the expression of NFATc1, CathK, OSCAR, FcRγ, TREM2 and DAP12 during the terminal stage of osteoclast formation. VIVIT treatment significantly (p<0.05) decreased CathK, OSCAR, FcRγ, and AnnVIII, gene expression. This data suggest FK506 and VIVIT act differently in targeting the calcineurin-NFAT signalling cascade to suppress key mediators of the ITAM pathway during late stage osteoclast differentiation and this is associated with a reduction in both osteoclast differentiation and activity.
  4. Yung-Hung RL, Ismail A, Lim TS, Choong YS
    Biochem Biophys Res Commun, 2011 Nov 18;415(2):229-34.
    PMID: 21982766 DOI: 10.1016/j.bbrc.2011.09.116
    Shigella flexneri serotype 2a is a major public health concern in the developing and under-developed countries which contributes to shigellosis endemic and mortality. Thus, there is an urgent need for a rapid diagnostic test for effective therapy and disease management. Previous study showed that a ∼35 kDa antigenic protein from S. flexneri is a potential biomarker. We therefore modelled the three-dimensional structure of the antigen to probe its functionality which could aid in the development of an antigen-based diagnostic. Results showed that the antigen is a transmembrane protein consists of OmpA and OmpA-like domains. The OmpA domain is a beta-barrel embedded in the outer membrane with four surface-exposed extracellular loops. The OmpA-like domain is linked to the OmpA domain with a 17 amino acids linker and located in the periplasmic. Docking of peptidoglycan into the groove of OmpA-like domain might help in catalyzing the bacterial cell wall formation. Both domains are expected to be involved in the virulence, structural stability, pathogenesis and survival of Shigella thus made the 35 kDa protein a suitable shigellosis diagnostic biomarker. This structural elucidation will also enable a better identification of the epitope regions for the development of specific binders to the 35 kDa antigen.
  5. Teh AH, Sim PF, Hisano T
    Biochem Biophys Res Commun, 2020 12 10;533(3):257-261.
    PMID: 33010888 DOI: 10.1016/j.bbrc.2020.09.064
    The alginate lyase AlyQ from Persicobacter sp. CCB-QB2 is a three-domained enzyme with a carbohydrate-binding module (CBM) from family 32. The CBM32 domain, AlyQB, binds enzymatically cleaved but not intact alginate. Co-crystallisation of AlyQB with the cleaved alginate reveals that it binds to the 4,5-unsaturated mannuronic acid of the non-reducing end. The binding pocket contains a conserved R248 that interacts with the sugar's carboxyl group, as well as an invariant W303 that stacks against the unsaturated pyranose ring. Targeting specifically the non-reducing end is more efficient than the reducing end since the latter consists of a mixture of mannuronic acid and guluronic acid. AlyQB also seems unable to bind these two saturated sugars as they contain OH groups that will clash with the pocket. Docking analysis of YeCBM32, which binds oligogalacturonic acid, shows that the stacking of the pyranose ring is shifted in order to accommodate the sugar's axial C1-OH, and its R69 is accordingly elevated to bind the sugar's carboxyl group. Unlike AlyQB, YeCBM32's binding pocket is able to accommodate both saturated and unsaturated galacturonic acid.
  6. Tee TT, Cheah YH, Meenakshii N, Mohd Sharom MY, Azimahtol Hawariah LP
    Biochem Biophys Res Commun, 2012 Apr 20;420(4):834-8.
    PMID: 22465013 DOI: 10.1016/j.bbrc.2012.03.083
    Xanthorrhizol is a plant-derived pharmacologically active sesquiterpenoid compound isolated from Curcuma xanthorrhiza. Previously, we have reported that xanthorrhizol inhibited the proliferation of HepG2 human hepatoma cells by inducing apoptotic cell death via caspase activation. Here, we attempt to further elucidate the mode of action of xanthorrhizol. Apoptosis in xanthorrhizol-treated HepG2 cells as observed by scanning electron microscopy was accompanied by truncation of BID; reduction of both anti-apoptotic Bcl-2 and Bcl-X(L) expression; cleavage of PARP and DFF45/ICAD proteins and DNA fragmentation. Taken together, these results suggest xanthorrhizol as a potent antiproliferative agent on HepG2 cells by inducing apoptosis via Bcl-2 family members. Hence we proposed that xanthorrhizol could be used as an anti-liver cancer drug for future studies.
  7. Tan SH, Chung HH, Shu-Chien AC
    Biochem Biophys Res Commun, 2010 Mar 12;393(3):397-403.
    PMID: 20138842 DOI: 10.1016/j.bbrc.2010.01.130
    Despite the known importance of long-chained polyunsaturated fatty acids (LC-PUFA) during development, very little is known about their utilization and biosynthesis during embryogenesis. Combining the advantages of the existence of a complete range of enzymes required for LC-PUFA biosynthesis and the well established developmental biology tools in zebrafish, we examined the expression patterns of three LC-PUFA biosynthesis genes, Elovl2-like elongase (elovl2), Elovl5-like elongase (elovl5) and fatty acyl desaturase (fad) in different zebrafish developmental stages. The presence of all three genes in the brain as early as 24 hours post fertilization (hpf) implies LC-PUFA synthesis activity in the embryonic brain. This expression eventually subsides from 72 hpf onwards, coinciding with the initiation of elovl2 and fad expression in the liver and intestine, 2 organs known to be involved in adult fish LC-PUFA biosynthesis. Collectively, these patterns strongly suggest the necessity for localized production of LC-PUFA in the brain during in early stage embryos prior to the maturation of the liver and intestine. Interestingly, we also showed a specific expression of elovl5 in the proximal convoluted tubule (PCT) of the zebrafish pronephros, suggesting a possible new role for LC-PUFA in kidney development and function.
  8. Tan K, Waiho K, Tan K, Qiao Y, Lim LS, Yang X, et al.
    Biochem Biophys Res Commun, 2023 Oct 30;679:66-74.
    PMID: 37673004 DOI: 10.1016/j.bbrc.2023.08.066
    Vitellogenin (Vtg) serves as the precursor of yolk protein and exhibits widespread distribution in tissues, including in the ovary of both vertebrates and invertebrates. Vtg plays a critical role in facilitating oocyte maturation and embryonic development following oviposition. In this study, we have successfully elucidated the complete transcript sequence of TtVtg6-like from an ancient chelicerate Tachypleus tridentatus. The TtVtg6-like transcript encompassed a length of 4887 bp and encoded 1629 amino acids residues. Notably, TtVtg6-like was found to contain 25 exons. Furthermore, the molecular weight and isoelectric point of TtVtg6-like were determined to be 191.6 KDa and 6.73, respectively. Subsequent mRNA expression analysis demonstrated the specific expression of TtVtg6-like in ovary and yellow connective tissue. In addition, TtVtg6-like was located and distributed in both ovary and yellow connective tissue. Intriguingly, employing an siRNA approach to silence TtVtg6-like resulted in a decrease in TtVtg6-like transcription levels. Concomitantly, TtVtg6-like silencing led to increase production of ROS, ultimately resulting in DNA damage and cell apoptosis within the ovarian primary cell. The induction of apoptosis ovarian primary cells due to TtVtg6-like silencing was further corroborated through TUNEL assay and flow cytometry analysis. Overall, our findings underscore the significance of TtVtg6-like in ovarian cell development, revealing its potential association with ovarian cell apoptosis. Consequently, the insights gained from this study contribute to the future exploration of vitellogenesis and ovarian development in T. tridentatus.
  9. Scaramozzino N, Crance JM, Drouet C, Roebuck JP, Drouet E, Jouan A, et al.
    Biochem Biophys Res Commun, 2002 May 31;294(1):16-22.
    PMID: 12054734
    Langat (LGT) virus, initially isolated in 1956 from ticks in Malaysia, is a naturally occurring nonpathogenic virus with a very close antigenicity to the highly pathogenic tick-borne encephalitis (TBE) Western subtype virus and TBE Far Eastern subtype virus. NS3, the second largest viral protein of LGT virus, is highly conserved among flaviviruses and contains a characteristic protease moiety (NS3 pro). NS3 pro represents an attractive target for anti-protease molecules against TBE virus. We report herein a purification method specially designed for NS3 pro of LGT using a strategy for proper refolding coupled with the enzymatic characterisation of the protein. Different p-nitroanilide substrates, defined on canonic sequences for their susceptibility to Ser-protease, were applied to the proteolytic assays of the protein. The highest values were obtained from substrates containing an Arg or Lys (amino acid) residue at the P1 position. This purification method will facilitate the future development of reliable testing procedures for anti-proteases directed to NS3 proteins.
  10. Rahmah N, Khairul Anuar A
    Biochem Biophys Res Commun, 1992 Dec 15;189(2):640-4.
    PMID: 1472034
    Mice were chronically infected with cysts of ME49 strain of Toxoplasma gondii. At different periods post-infection, their spleens were removed and single cell suspensions were made. Lymphocyte transformation experiments were performed on the lymphocyte suspensions using three different kinds of antigens of ME49 strain of T. gondii, namely soluble, excretory/secretory and cystic forms. The results showed that the pattern of lymphocyte responsiveness was dependent on the kind of antigen employed for induction of the blastogenesis. Using soluble and cystic forms of the antigen, different periods of lymphocyte suppression and lymphocyte proliferation were demonstrated. However, with the use of excretory/secretory antigen, no significant suppression of lymphocyte stimulation was noted throughout the course of infection. Thus excretory/secretory antigen may be the best form of antigen for stimulation of the cell-mediated immune response and hence it appears to be a good candidate for vaccine in toxoplasmosis.
  11. Rahmah N, Anuar AK
    Biochem Biophys Res Commun, 1992 Aug 31;187(1):294-8.
    PMID: 1520310
    C57BL/6 mice were orally infected with different doses of cysts of ME49 strain of Toxoplasma gondii to produce groups of acutely and chronically infected mice. Sera were obtained at different periods post-infection. SDS-PAGE was ran with excretory/secretory antigens of ME49 and RH strains of T. gondii, followed by Western blot analyses using the above sera and anti- IgA, IgM, IgG as conjugates. The SDS-PAGE profiles of the two antigens were similar. However the antigenic bands showed variations in all blots, most evidently in IgA blots of chronic sera. IgG blots showed greatest similarities in reactive bands. In IgM blots, more common bands were shown in chronic sera than in acute sera. Variations and similarities in prominence of some bands and time of their appearance were also noted, especially in IgM and IgG blots of chronic sera. Thus antigenic variations and similarities are present in excretory/secretory products of different strains of T. gondii.
  12. Rahmah N, Anuar AK, Karim R, Mehdi R, Sinniah B, Omar AW
    Biochem Biophys Res Commun, 1994 Nov 30;205(1):202-7.
    PMID: 7999024
    Sera from fifty subjects with different presentations of Brugian filariasis and from common soil-transmitted helminth infections were tested for specific anti-filarial IgG and its subclasses. Anti-filarial IgG, IgG1 and IgG3 showed cross-reactivities with soil-transmitted helminthic infections and no significant differences in optical densities among the various groups of filarial patients. In comparison with other groups of subjects, IgG4-ELISA of sera from microfilaraemic patients and some previously microfilaraemic patients showed a significant increase in optical density readings, while IgG2-ELISA showed elevated optical density readings in sera of patients with chronic elephantiasis. Therefore IgG2-ELISA is potentially useful in the diagnosis of brugian chronic elephantiasis while IgG4-ELISA may be beneficial for follow-up diagnosis of treated microfilaraemic patients.
  13. Rahmah N, Anuar AK, A'shikin AN, Lim BH, Mehdi R, Abdullah B, et al.
    Biochem Biophys Res Commun, 1998 Sep 29;250(3):586-8.
    PMID: 9784388
    Western blot analyses were performed on 444 serum specimens: 40 sera from microfilaraemic individuals, 10 sera from elephantiasis patients, 24 treated individuals, 50 sera from residents of endemic areas without anti-filarial IgG4 antibodies (endemic normals), 20 sera from amicrofilaraemic individuals with high anti-filarial IgG4 antibodies, 200 sera from healthy city-dwellers (non-endemic samples), and 100 sera from soil-transmitted helminth-infected individuals. Phast electrophoresis system was used to electrophorese Brugia malayi soluble adult worm antigen on 10-15% SDS-PAGE gradient gels followed by electrophoretic transfer onto PVDF membranes. Membrane strips were then successively incubated with blocking solution, human sera, and monoclonal anti-human IgG4 antibody-HRP, with adequate washings done in between each incubation step. Luminol chemiluminescence detection was then used to develop the blots. An antigenic band with the MW of approximately 37 kDa was found to be consistently present in the Western blots of all microfilaraemic sera, all amicrofilaraemic sera with high titres of anti-filarial IgG4 antibodies, some treated patients, and some elephantiasis patients. The antigen did not occur in immunoblots of individuals with other helminthic infections, normal endemic individuals, and city dwellers. Therefore the B. malayi antigen of with the MW of approximately 37 kDa demonstrated specific reactions with sera of B. malayi-infected individuals and thus may be useful for diagnostic application.
  14. Pratama E, Tian X, Lestari W, Iseki S, Ichwan SJ, Ikeda MA
    Biochem Biophys Res Commun, 2015 Dec;468(1-2):248-54.
    PMID: 26519881 DOI: 10.1016/j.bbrc.2015.10.121
    ARID3A and ARID3B are transcriptional targets of p53. Recently, it has been reported that ARID3A plays a critical role in the transcriptional activation of pro-arrest p21 in response to DNA damage. However, the role of ARID3B in the p53 regulatory pathway remains poorly understood. Here we show that ARID3A and ARID3B specifically bind to putative ARID3-binding sites in p53 target genes in vitro and in vivo. ARID3B and, to a lesser extent, ARID3A silencing blocked transcriptional activation of pro-apoptotic p53 target genes, such as PUMA, PIG3, and p53. Furthermore, ectopic ARID3B, to a lesser extent, ARID3A expression activated the pro-apoptotic gene expression, and only ARID3B induced apoptosis. Finally, ARID3B but not ARID3A silencing blocked apoptosis induction following DNA damage. These results indicated that, although ARID3B and ARID3A share overlapping functions, ARID3B play a key role in the expression of pro-apoptotic p53-target genes and apoptosis.
  15. Oon SF, Nallappan M, Kassim NK, Shohaimi S, Sa'ariwijaya MS, Tee TT, et al.
    Biochem Biophys Res Commun, 2016 09 23;478(3):1403-8.
    PMID: 27576204 DOI: 10.1016/j.bbrc.2016.08.136
    Hyperlipidemia is defined as the presence of either hypertriglyceridemia or hypercholesterolemia, which could cause atherosclerosis. Although hyperlipidemia can be treated by hypolipidemic drugs, they are limited due to lack of effectiveness and safety. Previous studies demonstrated that xanthorrhizol (XNT) isolated from Curcuma xanthorrhizza Roxb. reduced the levels of free fatty acid and triglyceride in vivo. However, its ability to inhibit cholesterol uptake in HT29 colon cells and adipogenesis in 3T3-L1 cells are yet to be reported. In this study, XNT purified from centrifugal TLC demonstrated 98.3% purity, indicating it could be an alternative purification method. The IC50 values of XNT were 30.81 ± 0.78 μg/mL in HT29 cells and 35.07 ± 0.24 μg/mL in 3T3-L1 adipocytes, respectively. Cholesterol uptake inhibition study using HT29 colon cells showed that XNT (15 μg/mL) significantly inhibited the fluorescent cholesterol analogue NBD uptake by up to 27 ± 3.1% relative to control. On the other hand, higher concentration of XNT (50 μg/mL) significantly suppressed the growth of 3T3-L1 adipocytes (5.9 ± 0.58%) compared to 3T3-L1 preadipocytes (81.31 ± 0.55%). XNT was found to impede adipogenesis of 3T3-L1 adipocytes in a dose-dependent manner from 3.125 to 12.5 μg/mL, where 12.5 μg/mL significantly suppressed 36.13 ± 2.1% of lipid accumulation. We postulate that inhibition of cholesterol uptake, adipogenesis, preadipocyte and adipocyte number may be utilized as treatment modalities to reduce the prevalence of lipidemia. To conclude, XNT could be a potential hypolipidemic agent to improve cardiovascular health in the future.
  16. Moriya S, Ogawa S, Parhar IS
    Biochem Biophys Res Commun, 2013 Jun 14;435(4):562-6.
    PMID: 23669040 DOI: 10.1016/j.bbrc.2013.05.004
    Most vertebrates possess at least two gonadotropin-releasing hormone (GnRH) neuron types. To understand the physiological significance of the multiple GnRH systems in the brain, we examined three GnRH neuron type-specific transcriptomes using single-cell microarray analyses in the medaka (Oryzias latipes). A microarray profile of the three GnRH neuron types revealed five genes that are uniquely expressed in specific GnRH neuron types. GnRH1 neurons expressed three genes that are homologous to functionally characterised genes, GnRH2 neurons uniquely expressed one unnamed gene, and GnRH3 neurons uniquely expressed one known gene. These genes may be involved in the modulation or maintenance of each GnRH neuron type.
  17. Mohd Yusoff MZ, Hashiguchi Y, Maeda T, Wood TK
    Biochem Biophys Res Commun, 2013 Oct 4;439(4):576-9.
    PMID: 24025676 DOI: 10.1016/j.bbrc.2013.09.016
    Pseudogenes are considered to be nonfunctional genes that lack a physiological role. By screening 3985 Escherichia coli mutants using chemochromic membranes, we found four pseudogenes involved in hydrogen metabolism. Knockouts of pseudogenes ydfW and ypdJ had a defective hydrogen phenotype on glucose and formate, respectively. Also, the knockout of pseudogene yqiG formed hydrogen from formate but not from glucose. For the yqiG mutant, 100% hydrogen recovery was obtained by the complementation of YqiG via a plasmid. The knockout of pseudogene ylcE showed hydrogen deficiency in minimal media which suggested that the role of YlcE is associated with cell growth. Hence, the products of these four pseudogenes play an important physiological role in hydrogen production in E. coli.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links