Displaying publications 1 - 20 of 65 in total

Abstract:
Sort:
  1. Zhu H
    Ecol Evol, 2017 12;7(23):10398-10408.
    PMID: 29238563 DOI: 10.1002/ece3.3561
    The tropical climate in China exists in southeastern Xizang (Tibet), southwestern to southeastern Yunnan, southwestern Guangxi, southern Guangdon, southern Taiwan, and Hainan, and these southern Chinese areas contain tropical floras. I checked and synonymized native seed plants from these tropical areas in China and recognized 12,844 species of seed plants included in 2,181 genera and 227 families. In the tropical flora of southern China, the families are mainly distributed in tropical areas and extend into temperate zones and contribute to the majority of the taxa present. The genera with tropical distributions also make up the most of the total flora. In terms of geographical elements, the genera with tropical Asian distribution constitute the highest proportion, which implies tropical Asian or Indo-Malaysia affinity. Floristic composition and geographical elements are conspicuous from region to region due to different geological history and ecological environments, although floristic similarities from these regions are more than 90% and 64% at the family and generic levels, respectively, but lower than 50% at specific level. These differences in the regional floras could be influenced by historical events associated with the uplift of the Himalayas, such as the southeastward extrusion of the Indochina geoblock, clockwise rotation and southeastward movement of Lanping-Simao geoblock, and southeastward movement of Hainan Island. The similarity coefficients between the flora of southern China and those of Indochina countries are more than 96% and 80% at family and generic levels, indicating their close floristic affinity and inclusion in the same biogeographically floristic unit.
  2. Wu R, Zou P, Tan G, Hu Z, Wang Y, Ning Z, et al.
    Ecol Evol, 2019 May;9(10):5766-5776.
    PMID: 31160997 DOI: 10.1002/ece3.5160
    Hybridization is very common in flowering plants and it plays a significant role in plant evolution and adaptation. Melastoma L. (Melastomataceae) comprises about 80-90 species in tropical Asia and Oceania, among which 41 species occur in Borneo. Natural hybridization is frequently reported in Melastoma in China, but so far there have been no confirmed cases of hybridization in Southeast Asia (including Borneo), where most species occur. Here, we identified a case of natural hybridization between Melastoma malabathricum L. and Melastoma beccarianum Cogn. in Sarawak, Malaysia, by using sequence data of three nuclear genes and one chloroplast intergenic spacer. Melastoma malabathricum is the most widespread species of this genus, occurring in almost the whole range of this genus, while M. beccarianum is a local species endemic to northern Borneo. Our results showed that natural hybridization and introgression occur between M. malabathricum and M. beccarianum, and the introgression was asymmetrical, mainly from M. malabathricum to M. beccarianum. As adaptive traits can be transferred by introgression, our study suggests that natural hybridization should be a significant mechanism for the evolution and adaptation of Melastoma in Southeast Asia. However, introgression from the common species M. malabathricum to the relatively rare species M. beccarianum may cause the decline of M. beccarianum, incurring conservation concern. With a large number of species of Melastoma and almost year-around flowering in Southeast Asia, more cases of natural hybridization are expected to be found and identified in near future.
  3. Sheridan JA, Mendenhall CD, Yambun P
    Ecol Evol, 2022 Dec;12(12):e9589.
    PMID: 36523519 DOI: 10.1002/ece3.9589
    Climate change threatens biodiversity in a range of ways, including changing animal body sizes. Despite numerous examples of size declines related to increasing temperatures, patterns of size change are not universal, suggesting that one or more primary mechanisms impacting size change are unknown. Precipitation is likely to influence the size different from and in conjunction with changes in temperature, yet tests of the interaction between these variables are rare. In this study, we show that a crossover interaction between temperature and precipitation impacts the body size of frogs as the climate warms. Using more than 3000 museum frog specimens from Borneo and climate records spanning more than 100 years, we found that frogs are larger in wet conditions than in dry conditions at cool temperatures, suggesting that resource availability determines body size at colder temperature. Conversely, frogs are larger in dry conditions than in wet conditions at warm temperatures, resulting in a crossover to desiccation resistance as the main determinant of body size as climates warm. Our results demonstrate that global warming can alter the impact of precipitation on life-history traits. We suggest that increased attention be paid to such interactive effects of climate variables, to identify complex mechanisms driving climate-induced size changes.
  4. Heino J, Melo AS, Bini LM, Altermatt F, Al-Shami SA, Angeler DG, et al.
    Ecol Evol, 2015 Mar;5(6):1235-48.
    PMID: 25859329 DOI: 10.1002/ece3.1439
    The hypotheses that beta diversity should increase with decreasing latitude and increase with spatial extent of a region have rarely been tested based on a comparative analysis of multiple datasets, and no such study has focused on stream insects. We first assessed how well variability in beta diversity of stream insect metacommunities is predicted by insect group, latitude, spatial extent, altitudinal range, and dataset properties across multiple drainage basins throughout the world. Second, we assessed the relative roles of environmental and spatial factors in driving variation in assemblage composition within each drainage basin. Our analyses were based on a dataset of 95 stream insect metacommunities from 31 drainage basins distributed around the world. We used dissimilarity-based indices to quantify beta diversity for each metacommunity and, subsequently, regressed beta diversity on insect group, latitude, spatial extent, altitudinal range, and dataset properties (e.g., number of sites and percentage of presences). Within each metacommunity, we used a combination of spatial eigenfunction analyses and partial redundancy analysis to partition variation in assemblage structure into environmental, shared, spatial, and unexplained fractions. We found that dataset properties were more important predictors of beta diversity than ecological and geographical factors across multiple drainage basins. In the within-basin analyses, environmental and spatial variables were generally poor predictors of variation in assemblage composition. Our results revealed deviation from general biodiversity patterns because beta diversity did not show the expected decreasing trend with latitude. Our results also call for reconsideration of just how predictable stream assemblages are along ecological gradients, with implications for environmental assessment and conservation decisions. Our findings may also be applicable to other dynamic systems where predictability is low.
  5. Iwanaga H, Teshima KM, Khatab IA, Inomata N, Finkeldey R, Siregar IZ, et al.
    Ecol Evol, 2012 Jul;2(7):1663-75.
    PMID: 22957170 DOI: 10.1002/ece3.284
    Distribution of tropical rainforests in Southeastern Asia has changed over geo-logical time scale, due to movement of tectonic plates and/or global climatic changes. Shorea parvifolia is one of the most common tropical lowland rainforest tree species in Southeastern Asia. To infer population structure and demographic history of S. parvifolia, as indicators of temporal changes in the distribution and extent of tropical rainforest in this region, we studied levels and patterns of nucleotide polymorphism in the following five nuclear gene regions: GapC, GBSSI, PgiC, SBE2, and SODH. Seven populations from peninsular Malaysia, Sumatra, and eastern Borneo were included in the analyses. STRUCTURE analysis revealed that the investigated populations are divided into two groups: Sumatra-Malay and Borneo. Furthermore, each group contained one admixed population. Under isolation with migration model, divergence of the two groups was estimated to occur between late Pliocene (2.6 MYA) and middle Pleistocene (0.7 MYA). The log-likelihood ratio tests of several demographic models strongly supported model with population expansion and low level of migration after divergence of the Sumatra-Malay and Borneo groups. The inferred demographic history of S. parvifolia suggested the presence of a scarcely forested land bridge on the Sunda Shelf during glacial periods in the Pleistocene and predominance of tropical lowland rainforest at least in Sumatra and eastern Borneo.
  6. Newbery DM, Stoll P
    Ecol Evol, 2021 Jun;11(11):6195-6222.
    PMID: 34141212 DOI: 10.1002/ece3.7452
    Classical tree neighborhood models use size variables acting at point distances. In a new approach here, trees were spatially extended as a function of their crown sizes, represented impressionistically as points within crown areas. Extension was accompanied by plasticity in the form of crown removal or relocation under the overlap of taller trees. Root systems were supposedly extended in a similar manner. For the 38 most abundant species in the focal size class (10-<100 cm stem girth) in two 4-ha plots at Danum (Sabah), for periods P1 (1986-1996) and P2 (1996-2007), stem growth rate and tree survival were individually regressed against stem size, and neighborhood conspecific (CON) and heterospecific (HET) basal areas within incremented steps in radius. Model parameters were critically assessed, and statistical robustness in the modeling was set by randomization testing. Classical and extended models differed importantly in their outcomes. Crown extension weakened the relationship of CON effect on growth versus plot species' abundance, showing that models without plasticity overestimated negative density dependence. A significant negative trend of difference in CON effects on growth (P2-P1) versus CON or HET effect on survival in P1 was strongest with crown extension. Model outcomes did not then support an explanation of CON and HET effects being due to (asymmetric) competition for light alone. An alternative hypothesis is that changes in CON effects on small trees, largely incurred by a drought phase (relaxing light limitation) in P2, and following the more shaded (suppressing) conditions in P1, were likely due to species-specific (symmetric) root competition and mycorrhizal processes. The very high variation in neighborhood composition and abundances led to a strong "neighborhood stochasticity" and hence to largely idiosyncratic species' responses. A need to much better understand the roles of rooting structure and processes at the individual tree level was highlighted.
  7. Koch K, Algar D, Schwenk K
    Ecol Evol, 2016 08;6(15):5321-32.
    PMID: 27551385 DOI: 10.1002/ece3.2261
    Endemic species on islands are highly susceptible to local extinction, in particular if they are exposed to invasive species. Invasive predators, such as feral cats, have been introduced to islands around the world, causing major losses in local biodiversity. In order to control and manage invasive species successfully, information about source populations and level of gene flow is essential. Here, we investigate the origin of feral cats of Hawaiian and Australian islands to verify their European ancestry and a potential pattern of isolation by distance. We analyzed the genetic structure and diversity of feral cats from eleven islands as well as samples from Malaysia and Europe using mitochondrial DNA (ND5 and ND6 regions) and microsatellite DNA data. Our results suggest an overall European origin of Hawaiian cats with no pattern of isolation by distance between Australian, Malaysian, and Hawaiian populations. Instead, we found low levels of genetic differentiation between samples from Tasman Island, Lana'i, Kaho'olawe, Cocos (Keeling) Island, and Asia. As these populations are separated by up to 10,000 kilometers, we assume an extensive passive dispersal event along global maritime trade routes in the beginning of the 19th century, connecting Australian, Asian, and Hawaiian islands. Thus, islands populations, which are characterized by low levels of current gene flow, represent valuable sources of information on historical, human-mediated global dispersal patterns of feral cats.
  8. Doorenweerd C, Sievert S, Rossi W, Rubinoff D
    Ecol Evol, 2020 Aug;10(16):8871-8879.
    PMID: 32884663 DOI: 10.1002/ece3.6585
    Understanding the factors that determine the realized and potential distribution of a species requires knowledge of abiotic, physiological, limitations as well as ecological interactions. Fungi of the order Laboulbeniales specialize on arthropods and are typically thought to be highly specialized on a single species or closely related group of species. Because infections are almost exclusively transmitted through direct contact between the hosts, the host ecology, to a large extent, determines the distribution and occurrence of the fungus. We examined ~20,000 fruit flies (Diptera: Dacinae) collected in Malaysia, Sulawesi, Australia, and the Solomon Islands between 2017 and 2019 for fungal infections and found 197 infected flies across eight different Bactrocera species. Morphology and 1,363 bps of small subunit (18S) DNA sequences both support that the infections are from a single polyphagous fungal species Stigmatomyces dacinus-a known ectoparasite of these fruit flies. This leads to the question: why is S. dacinus rare, when its hosts are widespread and abundant? In addition, the hosts are all Bactrocera, a genus with ~480 species, but 37 Bactrocera species found sympatric with the hosts were never infected. Host-selection does not appear to be phylogenetically correlated. These results suggest a hidden complexity in how different, but closely related, host species vary in their susceptibility, which somehow limits the abundance and dispersal capability of the fungus.
  9. Çilingir FG, Seah A, Horne BD, Som S, Bickford DP, Rheindt FE
    Ecol Evol, 2019 Sep;9(17):9500-9510.
    PMID: 31534671 DOI: 10.1002/ece3.5434
    The southern river terrapin, Batagur affinis is one of the world's 25 most endangered freshwater turtle species. The major portion of the global population is currently found in peninsular Malaysia, with the only remnant Indochinese population in southern Cambodia. For more than a decade, wild nests in this remnant Cambodian population have been fenced and hatchlings reared in captivity. Here we amplified 10 microsatellite markers from all 136 captive individuals, obtained 2,658 presumably unlinked and neutral single nucleotide polymorphisms from 72 samples with ddRAD-seq, and amplified 784 bp of mtDNA from 50 samples. Our results reveal that the last Indochinese population comprised only four kinship groups as of 2012, with all offspring sired from <10 individuals in the wild. We demonstrate an obvious decrease in genetic contributions of breeders in the wild from 2006-2012 and identify high-value breeders instrumental for ex-situ management of the contemporary genetic stock of the species.
  10. Sharma S, Chee-Yoong W, Kannan A, Rama Rao S, Abdul-Patah P, Ratnayeke S
    Ecol Evol, 2022 Dec;12(12):e9585.
    PMID: 36518624 DOI: 10.1002/ece3.9585
    Four species of otters occur in tropical Asia, and all face multiple threats to their survival. Studies of distribution and population trends of these otter species in Asia, where they occur sympatrically, are complicated by their elusive nature and difficulties with reliable identification of species in field surveys. In Malaysia, only three species, the smooth-coated otter, Asian small-clawed otter, and hairy-nosed otter have been reliably reported as residents. We designed a replicable and cost-efficient PCR-RFLP protocol to identify these three species. Using published reference sequences of mitochondrial regions, we designed and tested three PCR-RFLP protocols on DNA extracted from reference samples and 33 spraints of wild otters collected along the North Central Selangor Coast of Malaysia. We amplified and sequenced two fragments (450 and 200 bp) of the mt D-loop region and a 300-bp fragment of the mt ND4 gene using primer sets TanaD, TanaD-Mod, and OTR-ND4, respectively. Amplification products were digested with restriction enzymes to generate species-specific RFLP profiles. We analyzed the costs of all three protocols and compared these with the costs of sequencing for species identification. Amplification success was highest for the smallest PCR product, with the TanaD-Mod primer amplifying DNA from all 33 spraints. TanaD and OTR-ND4 primers amplified DNA from 60.6% and 63.6% spraints, respectively. PCR products of TanaD-Mod provided the expected species-specific RFLP profile for 32 (97%) of the spraints. PCR products of OTR-ND4 provided the expected RFLP profile for all 21 samples that amplified, but TanaD produced spurious bands and inconsistent RFLP profiles. The OTR-ND4 primer-enzyme protocol was the least expensive (437 USD) for processing 100 samples, followed by TanaD-Mod (455 USD). We suggest the use of both OTR-ND4 and TanaD-Mod protocols that show potential for highly efficient and reliable species identification from noninvasive genetic sampling of three Asian otter species. We expect our novel noninvasive PCR-RFLP analysis methods to facilitate population monitoring, ecological and behavioral studies on otters in tropical and subtropical Asia.
  11. Hudson LN, Newbold T, Contu S, Hill SL, Lysenko I, De Palma A, et al.
    Ecol Evol, 2014 Dec;4(24):4701-35.
    PMID: 25558364 DOI: 10.1002/ece3.1303
    Biodiversity continues to decline in the face of increasing anthropogenic pressures such as habitat destruction, exploitation, pollution and introduction of alien species. Existing global databases of species' threat status or population time series are dominated by charismatic species. The collation of datasets with broad taxonomic and biogeographic extents, and that support computation of a range of biodiversity indicators, is necessary to enable better understanding of historical declines and to project - and avert - future declines. We describe and assess a new database of more than 1.6 million samples from 78 countries representing over 28,000 species, collated from existing spatial comparisons of local-scale biodiversity exposed to different intensities and types of anthropogenic pressures, from terrestrial sites around the world. The database contains measurements taken in 208 (of 814) ecoregions, 13 (of 14) biomes, 25 (of 35) biodiversity hotspots and 16 (of 17) megadiverse countries. The database contains more than 1% of the total number of all species described, and more than 1% of the described species within many taxonomic groups - including flowering plants, gymnosperms, birds, mammals, reptiles, amphibians, beetles, lepidopterans and hymenopterans. The dataset, which is still being added to, is therefore already considerably larger and more representative than those used by previous quantitative models of biodiversity trends and responses. The database is being assembled as part of the PREDICTS project (Projecting Responses of Ecological Diversity In Changing Terrestrial Systems - http://www.predicts.org.uk). We make site-level summary data available alongside this article. The full database will be publicly available in 2015.
  12. Hudson LN, Newbold T, Contu S, Hill SL, Lysenko I, De Palma A, et al.
    Ecol Evol, 2017 Jan;7(1):145-188.
    PMID: 28070282 DOI: 10.1002/ece3.2579
    The PREDICTS project-Projecting Responses of Ecological Diversity In Changing Terrestrial Systems (www.predicts.org.uk)-has collated from published studies a large, reasonably representative database of comparable samples of biodiversity from multiple sites that differ in the nature or intensity of human impacts relating to land use. We have used this evidence base to develop global and regional statistical models of how local biodiversity responds to these measures. We describe and make freely available this 2016 release of the database, containing more than 3.2 million records sampled at over 26,000 locations and representing over 47,000 species. We outline how the database can help in answering a range of questions in ecology and conservation biology. To our knowledge, this is the largest and most geographically and taxonomically representative database of spatial comparisons of biodiversity that has been collated to date; it will be useful to researchers and international efforts wishing to model and understand the global status of biodiversity.
  13. Duong TY, Nguyen NT, Tran DD, Le TH, Nor SAM
    Ecol Evol, 2023 Feb;13(2):e9845.
    PMID: 36820247 DOI: 10.1002/ece3.9845
    Population genetic structure of migratory fishes can reflect ecological and evolutionary processes. Pangasius krempfi is a critically important anadromous catfish in the Mekong River, and its migration pathways and genetic structure have attracted much interest. To investigate, we quantified the genetic diversity of this species using the control region (D-loop) and Cytochrome b (Cytb) of the mitochondrial genome. Fish were sampled (n = 91) along the Mekong tributaries from upstream to estuaries and coastal areas in the Mekong Delta and compared to three samples from Pakse (Laos). The D-loop haplotype (0.941 ± 0.014) and nucleotide diversity (0.0083 ± 0.0005) were high in all populations, but that of Cytb was low (0.331 ± 0.059 and 0.00063 ± 0.00011, respectively). No genetic difference was detected between populations, indicating strong gene flow and confirming a long migration distance for this species. Pangasius krempfi was not genetically structured according to geographical populations but was delineated into three haplogroups, suggesting multiple genetic lineages. The presence of haplogroups in each sampling location implies that migration downstream is random but parallel when the fish enter two river tributaries bifurcating from the main Mekong River. Individuals can also migrate along the coast, far from the estuaries, suggesting a longer migration path than previously reported, which is crucial for maintaining diverse genetic origin and migration pathways for P. krempfi.
  14. Liu KL, Tseng SP, Tatsuta H, Tsuji K, Tay JW, Singham GV, et al.
    Ecol Evol, 2022 Dec;12(12):e9660.
    PMID: 36582779 DOI: 10.1002/ece3.9660
    Global commerce and transportation facilitate the spread of invasive species. The African big-headed ant, Pheidole megacephala (Fabricius), has achieved worldwide distribution through globalization. Since the late 19th century, Taiwan has served as a major seaport because of its strategic location. The population genetic structure of P. megacephala in Taiwan is likely to be shaped by international trade and migration between neighboring islands. In this study, we investigated the population genetics of P. megacephala colonies sampled from four geographical regions in Taiwan and elucidated the population genetic structures of P. megacephala sampled from Taiwan, Okinawa, and Hawaii. We observed a low genetic diversity of P. megacephala across regions in Taiwan. Moreover, we noted low regional genetic differentiation and did not observe isolation by distance, implying that long-distance jump dispersal might have played a crucial role in the spread of P. megacephala. We sequenced the partial cytochrome oxidase I gene and observed three mitochondrial haplotypes (TW1-TW3). TW1 and TW3 most likely originated from populations within the species' known invasive range, suggesting that secondary introduction is the predominant mode of introduction for this invasive ant. TW2 represents a novel haplotype that was previously unreported in other regions. P. megacephala populations from Taiwan, Okinawa, and Hawaii exhibited remarkable genetic similarity, which may reflect their relative geographic proximity and the historical connectedness of the Asia-Pacific region.
  15. Takeuchi H, Savitzky AH, Ding L, de Silva A, Das I, Nguyen TT, et al.
    Ecol Evol, 2018 Oct;8(20):10219-10232.
    PMID: 30397460 DOI: 10.1002/ece3.4497
    A large body of evidence indicates that evolutionary innovations of novel organs have facilitated the subsequent diversification of species. Investigation of the evolutionary history of such organs should provide important clues for understanding the basis for species diversification. An Asian natricine snake, Rhabdophis tigrinus, possesses a series of unusual organs, called nuchal glands, which contain cardiotonic steroid toxins known as bufadienolides. Rhabdophis tigrinus sequesters bufadienolides from its toad prey and stores them in the nuchal glands as a defensive mechanism. Among more than 3,500 species of snakes, only 17 Asian natricine species are known to possess nuchal glands or their homologues. These 17 species belong to three nominal genera, Balanophis, Macropisthodon, and Rhabdophis. In Macropisthodon and Rhabdophis, however, species without nuchal glands also exist. To infer the evolutionary history of the nuchal glands, we investigated the molecular phylogenetic relationships among Asian natricine species with and without nuchal glands, based on variations in partial sequences of Mt-CYB, Cmos, and RAG1 (total 2,767 bp). Results show that all species with nuchal glands belong to a single clade (NGC). Therefore, we infer that the common ancestor of this clade possessed nuchal glands with no independent origins of the glands within the members. Our results also imply that some species have secondarily lost the glands. Given the estimated divergence time of related species, the ancestor of the nuchal gland clade emerged 19.18 mya. Our study shows that nuchal glands are fruitful subjects for exploring the evolution of novel organs. In addition, our analysis indicates that reevaluation of the taxonomic status of the genera Balanophis and Macropisthodon is required. We propose to assign all species belonging to the NGC to the genus Rhabdophis, pending further study.
  16. Jackson-Ricketts J, Junchompoo C, Hines EM, Hazen EL, Ponnampalam LS, Ilangakoon A, et al.
    Ecol Evol, 2020 Mar;10(6):2778-2792.
    PMID: 32211155 DOI: 10.1002/ece3.6023
    AIM: The Irrawaddy dolphin (Orcaella brevirostris) is an endangered cetacean found throughout Southeast Asia. The main threat to this species is human encroachment, led by entanglement in fishing gear. Information on this data-poor species' ecology and habitat use is needed to effectively inform spatial management.

    LOCATION: We investigated the habitat of a previously unstudied group of Irrawaddy dolphins in the eastern Gulf of Thailand, between the villages of Laem Klat and Khlong Yai, in Trat Province. This location is important as government groups plan to establish a marine protected area.

    METHODS: We carried out boat-based visual line transect surveys with concurrent oceanographic measurements and used hurdle models to evaluate this species' patterns of habitat use in this area.

    RESULTS: Depth most strongly predicted dolphin presence, while temperature was a strong predictor of group size. The highest probability of dolphin presence occurred at around 10.0 m with an optimal depth range of 7.50 to 13.05 m. The greatest number of dolphins was predicted at 24.93°C with an optimal range between 24.93 and 25.31°C. Dolphins are most likely to occur in two primary locations, one large region in the center of the study area (11o54'18''N to 11o59'23''N) and a smaller region in the south (11o47'28''N to 11o49'59''N). Protections for this population will likely have the greatest chance of success in these two areas.

    MAIN CONCLUSIONS: The results of this work can inform management strategies within the immediate study area by highlighting areas of high habitat use that should be considered for marine spatial planning measures, such as the creation of marine protected areas. Species distribution models for this species in Thailand can also assist conservation planning in other parts of the species' range by expanding our understanding of habitat preferences.

  17. Ab Ghani NI, Merilä J
    Ecol Evol, 2015 Jan;5(1):7-23.
    PMID: 25628860 DOI: 10.1002/ece3.1342
    Compensatory growth (CG) may be an adaptive mechanism that helps to restore an organisms' growth trajectory and adult size from deviations caused by early life resource limitation. Yet, few studies have investigated the genetic basis of CG potential and existence of genetically based population differentiation in CG potential. We studied population differentiation, genetic basis, and costs of CG potential in nine-spined sticklebacks (Pungitius pungitius) differing in their normal growth patterns. As selection favors large body size in pond and small body size in marine populations, we expected CG to occur in the pond but not in the marine population. By manipulating feeding conditions (viz. high, low and recovery feeding treatments), we found clear evidence for CG in the pond but not in the marine population, as well as evidence for catch-up growth (i.e., size compensation without growth acceleration) in both populations. In the marine population, overcompensation occurred individuals from the recovery treatment grew eventually larger than those from the high feeding treatment. In both populations, the recovery feeding treatment reduced maturation probability. The recovery feeding treatment also reduced survival probability in the marine but not in the pond population. Analysis of interpopulation hybrids further suggested that both genetic and maternal effects contributed to the population differences in CG. Hence, apart from demonstrating intrinsic costs for recovery growth, both genetic and maternal effects were identified to be important modulators of CG responses. The results provide an evidence for adaptive differentiation in recovery growth potential.
  18. Rostro-García S, Kamler JF, Minge C, Caragiulo A, Crouthers R, Groenenberg M, et al.
    Ecol Evol, 2021 May;11(9):4205-4217.
    PMID: 33976804 DOI: 10.1002/ece3.7316
    Dry deciduous dipterocarp forests (DDF) cover about 15%-20% of Southeast Asia and are the most threatened forest type in the region. The jungle cat (Felis chaus) is a DDF specialist that occurs only in small isolated populations in Southeast Asia. Despite being one of the rarest felids in the region, almost nothing is known about its ecology. We investigated the ecology of jungle cats and their resource partitioning with the more common leopard cats (Prionailurus bengalensis) in a DDF-dominated landscape in Srepok Wildlife Sanctuary, Cambodia. We used camera-trap data collected from 2009 to 2019 and DNA-confirmed scats to determine the temporal, dietary and spatial overlap between jungle cats and leopard cats. The diet of jungle cats was relatively diverse and consisted of murids (56% biomass consumed), sciurids (15%), hares (Lepus peguensis; 12%), birds (8%), and reptiles (8%), whereas leopard cats had a narrower niche breadth and a diet dominated by smaller prey, primarily murids (73%). Nonetheless, dietary overlap was high because both felid species consumed predominantly small rodents. Both species were primarily nocturnal and had high temporal overlap. Two-species occupancy modelling suggested jungle cats were restricted to DDF and had low occupancy, whereas leopard cats had higher occupancy and were habitat generalists. Our study confirmed that jungle cats are DDF specialists that likely persist in low numbers due to the harsh conditions of the dry season in this habitat, including annual fires and substantial decreases in small vertebrate prey. The lower occupancy and more diverse diet of jungle cats, together with the broader habitat use of leopard cats, likely facilitated the coexistence of these species. The low occupancy of jungle cats in DDF suggests that protection of large areas of DDF will be required for the long-term conservation of this rare felid in Southeast Asia.
  19. Hung TH, Gooda R, Rizzuto G, So T, Thammavong B, Tran HT, et al.
    Ecol Evol, 2020 Oct;10(19):10872-10885.
    PMID: 33072302 DOI: 10.1002/ece3.6744
    Dalbergia cochinchinensis and D. oliveri are classified as vulnerable and endangered, respectively, in the IUCN Red List and under continued threat from deforestation and illegal harvesting for rosewood. Despite emerging efforts to conserve and restore these species, little is known of their responses to drought and heat stress, which are expected to increase in the Greater Mekong Subregion where the species co-occur and are endemic. In this study of isolated and combined drought and heat effects, we found that D. oliveri had an earlier stomatal closure and more constant midday water potential in response to increasing drought level, suggesting that D. oliveri is relatively isohydric while D. cochinchinensis is relatively anisohydric. Heat shock and drought had synergistic effects on stomatal closure. Our results indicate contrasting relationships in water relations, photosynthetic pigment levels, and total soluble sugars. An increase in chlorophyll a was observed in D. cochinchinensis during drought, and a concomitant increase in carotenoid content likely afforded protection against photo-oxidation. These physiological changes correlated with higher total soluble sugars in D. cochinchinensis. By contrast, D. oliveri avoided drought by reducing chlorophyll content and compromising productivity. Anisohydry and drought tolerance in D. cochinchinensis are adaptations which fit well with its ecological niche as a pioneering species with faster growth in young trees. We believe this understanding of the stress responses of both species will be crucial to their effective regeneration and conservation in degraded habitats and in the face of climate change.
  20. Frias L, Stark DJ, Salgado Lynn M, Nathan S, Goossens B, Okamoto M, et al.
    Ecol Evol, 2019 Apr;9(7):3937-3945.
    PMID: 31015978 DOI: 10.1002/ece3.5022
    Strongyles are commonly reported parasites in studies of primate parasite biodiversity. Among them, nodule worm species are often overlooked as a serious concern despite having been observed to cause serious disease in nonhuman primates and humans. In this study, we investigated whether strongyles found in Bornean primates are the nodule worm Oesophagostomum spp., and to what extent these parasites are shared among members of the community. To test this, we propose two hypotheses that use the parasite genetic structure to infer transmission processes within the community. In the first scenario, the absence of parasite genetic substructuring would reflect high levels of parasite transmission among primate hosts, as primates' home ranges overlap in the study area. In the second scenario, the presence of parasite substructuring would suggest cryptic diversity within the parasite genus and the existence of phylogenetic barriers to cross-species transmission. By using molecular markers, we identify strongyles infecting this primate community as O. aculeatum, the only species of nodule worm currently known to infect Asian nonhuman primates. Furthermore, the little to no genetic substructuring supports a scenario with no phylogenetic barriers to transmission and where host movements across the landscape would enable gene flow between host populations. This work shows that the parasite's high adaptability could act as a buffer against local parasite extinctions. Surveys targeting human populations living in close proximity to nonhuman primates could help clarify whether this species of nodule worm presents the zoonotic potential found in the other two species infecting African nonhuman primates.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links