Displaying all 5 publications

Abstract:
Sort:
  1. Ng CT, Fong LY, Sulaiman MR, Moklas MA, Yong YK, Hakim MN, et al.
    J Interferon Cytokine Res, 2015 Jul;35(7):513-22.
    PMID: 25830506 DOI: 10.1089/jir.2014.0188
    Interferon-gamma (IFN-γ) is known to potentiate the progression of inflammatory diseases, such as inflammatory bowel disease and atherosclerosis. IFN-γ has been found to disrupt the barrier integrity of epithelial and endothelial cell both in vivo and in vitro. However, the mechanisms of IFN-γ underlying increased endothelial cell permeability have not been extensively elucidated. We reported that IFN-γ exhibits a biphasic nature in increasing endothelial permeability. The changes observed in the first phase (4-8 h) involve cell retraction and rounding in addition to condensed peripheral F-actin without a significant change in the F-/G-actin ratio. However, cell elongation, stress fiber formation, and an increased F-/G-actin ratio were noticed in the second phase (16-24 h). Consistent with our finding from the permeability assay, IFN-γ induced the formation of intercellular gaps in both phases. A delayed phase of increased permeability was observed at 12 h, which paralleled the onset of cell elongation, stress fiber formation, and increased F-/G-actin ratio. In addition, IFN-γ stimulated p38 mitogen-activated protein (MAP) kinase phosphorylation over a 24 h period. Inhibition of p38 MAP kinase by SB203580 prevented increases in paracellular permeability, actin rearrangement, and increases in the F-/G-actin ratio caused by IFN-γ. Our results suggest that p38 MAP kinase is activated in response to IFN-γ and causes actin rearrangement and altered cell morphology, which in turn mediates endothelial cell hyperpermeability. The F-/G-actin ratio might be involved in the regulation of actin distribution and cell morphology rather than the increased permeability induced by IFN-γ.
  2. Chauhan I, Beena VT, Srinivas L, Sathyan S, Banerjee M
    J Interferon Cytokine Res, 2013 Aug;33(8):420-7.
    PMID: 23651237 DOI: 10.1089/jir.2012.0115
    Oral lichen planus (OLP) is a chronic mucocutaneous condition that affects the oral mucous membrane as well as skin. It is a chronic cell-mediated autoimmune condition where the T-cell-mediated immune response plays an important part in the pathogenesis by causing damage to basal keratinocytes in oral mucosa. Cytokine gene polymorphisms have an unquestionable role in the orchestration of the immune response, leading to different functional scenarios, which in turn influence the outcome of the disease establishment and evolution. The purpose of this study was to understand the role of these cytokine gene polymorphisms in the tumor necrosis factor-alpha (TNF-α), interleukin-1β (IL-1β), and IL-6 genes with OLP in 101 individuals of Malayalam-speaking ethnicity from South India (Kerala). We further investigated the role of these polymorphisms in patients suffering from OLP with other comorbid factors. Genotyping was carried out by polymerase chain reaction-restriction fragment length polymorphism. The results demonstrate that the A allele in the TNF-α -308 polymorphism could play an important role in the susceptibility to OLP. IL-1β +3954 in OLP was associated with other comorbid factors in both allelic and genotypic combinations. However, when patients suffering from OLP were stratified to understand the involvement of other comorbid factors, we observed that the T and C alleles were independent risk factors for chronic periodontitits and diabetes mellitus. On the other hand, IL-6 -597 did not show any disease association with OLP in the study population. This study indicates that proinflammatory cytokines are an important factor in understanding the disease burden of OLP and their comorbid factors.
  3. Ahmad S, Mohd Noor N, Engku Nur Syafirah EAR, Irekeola AA, Shueb RH, Chan YY, et al.
    J Interferon Cytokine Res, 2023 Feb;43(2):77-85.
    PMID: 36795972 DOI: 10.1089/jir.2022.0211
    Tumor-necrosis factor (TNF) is recognized as a therapeutic target in inflammatory diseases, including asthma. In severe forms of asthma, biologics such as anti-TNF are rendered to be investigated as therapeutic options in severe asthma. Hence, this work is done to assess the efficacy and safety of anti-TNF as a supplementary therapy for patients with severe asthma. A systematic search of 3 databases (Cochrane Central Register of Controlled Trials, MEDLINE, ClinicalTrials.gov) was performed to identify for published and unpublished randomized controlled trials comparing anti-TNF (etanercept, adalimumab, infliximab, certolizumab pegol, golimumab) with placebo in patients diagnosed with persistent or severe asthma. Random-effects model was used to estimate risk ratios and mean differences (MDs) with confidence intervals (95% CIs). PROSPERO registration number is CRD42020172006. Four trials with 489 randomized patients were included. Comparison between etanercept and placebo involved 3 trials while comparison between golimumab and placebo involved 1 trial. Etanercept produced a small but significant impairment in forced expiratory flow in 1 second (MD 0.33, 95% CI 0.09-0.57, I2 statistic = 0%, P = 0.008) and a modest improvement of asthma control using the Asthma Control Questionnaire. However, using the Asthma Quality of Life Questionnaire, the patients exhibit an impaired quality of life with etanercept. Treatment with etanercept showed a reduced injection site reaction and gastroenteritis compared with placebo. Although treatment with anti-TNF is shown to improve asthma control, severe asthma patients did not benefit from this therapy as there is limited evidence for improvement in lung function and reduction of asthma exacerbation. Hence, it is unlikely to prescribe anti-TNF in adults with severe asthma.
  4. Selvaduray KR, Radhakrishnan AK, Kutty MK, Nesaretnam K
    J Interferon Cytokine Res, 2010 Dec;30(12):909-16.
    PMID: 21121862 DOI: 10.1089/jir.2010.0021
    Several mechanisms have been postulated for the anticancer effects of tocotrienols. In this study, for the first time, the anticancer effect of tocotrienols is linked to increased expression of interleukin-24 (IL-24) mRNA, a cytokine reported to have antitumor effects in many cancer models. Tocotrienol isomers (α-T3, γ-T3, and δ-T3) and tocotrienol-rich fraction (TRF) inhibited the growth of the 4T1 murine mammary cancer cells (P  γ-T3 > TRF > α-T3 > α-T, which was similar to their antiproliferative effects. The IL-24 mRNA levels in tumor tissues of BALB/c mice supplemented with TRF increased 2-fold when compared with control mice. Increased levels of IL-24 have been associated with inhibition of tumor growth and angiogenesis. Treatment of 4T1 cells with TRF and δ-T3 significantly decreased IL-8 and vascular endothelial growth factor mRNA levels. Hence, we report that tocotrienols have potent antiangiogenic and antitumor effects that is associated with increased levels of IL-24 mRNA.
  5. Ch'ng WC, Stanbridge EJ, Yusoff K, Shafee N
    J Interferon Cytokine Res, 2013 Jul;33(7):346-54.
    PMID: 23506478 DOI: 10.1089/jir.2012.0095
    Viral-mediated oncolysis is a promising cancer therapeutic approach offering an increased efficacy with less toxicity than the current therapies. The complexity of solid tumor microenvironments includes regions of hypoxia. In these regions, the transcription factor, hypoxia inducible factor (HIF), is active and regulates expression of many genes that contribute to aggressive malignancy, radio-, and chemo-resistance. To investigate the oncolytic efficacy of a highly virulent (velogenic) Newcastle disease virus (NDV) in the presence or absence of HIF-2α, renal cell carcinoma (RCC) cell lines with defective or reconstituted wild-type (wt) von Hippel-Lindau (VHL) activity were used. We show that these RCC cells responded to NDV by producing only interferon (IFN)-β, but not IFN-α, and are associated with increased STAT1 phosphorylation. Restoration of wt VHL expression enhanced NDV-induced IFN-β production, leading to prolonged STAT1 phosphorylation and increased cell death. Hypoxia augmented NDV oncolytic activity regardless of the cells' HIF-2α levels. These results highlight the potential of oncolytic NDV as a potent therapeutic agent in the killing of hypoxic cancer cells.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links