Demand on optical or photonic applications in the visible or short-wavelength infrared (SWIR) spectra, such as vision, virtual or augmented displays, imaging, spectroscopy, remote sensing (LIDAR), chemical reaction sensing, microscopy, and photonic integrated circuits, has envisaged new type of subwavelength-featured materials and devices for controlling electromagnetic waves. The study on metasurfaces, of which the thickness is either comparable to or smaller than the wavelength of the considered incoming electromagnetic wave, has been grown rapidly to embrace the needs of developing sub 100-micron active photonic pixelated devices and their arrayed form. Meta-atoms in metasurfaces are now actively controlled under external stimuli to lead to a large phase shift upon the incident light, which has provided a huge potential for arrayed two-dimensional active optics. This short review summarizes actively tunable or reconfigurable metasurfaces for the visible or SWIR spectra, to account for the physical operating principles and the current issues to overcome.
Owing to the unique structural characteristics as well as outstanding physio-chemical and electrical properties, graphene enables significant enhancement with the performance of electrospun nanofibers, leading to the generation of promising applications in electrospun-mediated sensor technologies. Electrospinning is a simple, cost-effective, and versatile technique relying on electrostatic repulsion between the surface charges to continuously synthesize various scalable assemblies from a wide array of raw materials with diameters down to few nanometers. Recently, electrospun nanocomposites have emerged as promising substrates with a great potential for constructing nanoscale biosensors due to their exceptional functional characteristics such as complex pore structures, high surface area, high catalytic and electron transfer, controllable surface conformation and modification, superior electric conductivity and unique mat structure. This review comprehends graphene-based nanomaterials (GNMs) (graphene, graphene oxide (GO), reduced GO and graphene quantum dots) impregnated electrospun polymer composites for the electro-device developments, which bridges the laboratory set-up to the industry. Different techniques in the base polymers (pre-processing methods) and surface modification methods (post-processing methods) to impregnate GNMs within electrospun polymer nanofibers are critically discussed. The performance and the usage as the electrochemical biosensors for the detection of wide range analytes are further elaborated. This overview catches a great interest and inspires various new opportunities across a wide range of disciplines and designs of miniaturized point-of-care devices.