Extensive research into the therapeutics of asthma has yielded numerous effective interventions over the past few decades. However, adverse effects and ineffectiveness of most of these medications especially in the management of steroid resistant severe asthma necessitate the development of better medications. Numerous drug targets with inherent airway smooth muscle tone modulatory role have been identified for asthma therapy. This article reviews the latest understanding of underlying molecular aetiology of asthma towards design and development of better antiasthma drugs. New drug candidates with their putative targets that have shown promising results in the preclinical and/or clinical trials are summarised. Examples of these interventions include restoration of Th1/Th2 balance by the use of newly developed immunomodulators such as toll-like receptor-9 activators (CYT003-QbG10 and QAX-935). Clinical trials revealed the safety and effectiveness of chemoattractant receptor-homologous molecule expressed on Th2 cells (CRTH2) antagonists such as OC0000459, BI-671800 and ARRY-502 in the restoration of Th1/Th2 balance. Regulation of cytokine activity by the use of newly developed biologics such as benralizumab, reslizumab, mepolizumab, lebrikizumab, tralokinumab, dupilumab and brodalumab are at the stage of clinical development. Transcription factors are potential targets for asthma therapy, for example SB010, a GATA-3 DNAzyme is at its early stage of clinical trial. Other candidates such as inhibitors of Rho kinases (Fasudil and Y-27632), phosphodiesterase inhibitors (GSK256066, CHF 6001, roflumilast, RPL 554) and proteinase of activated receptor-2 (ENMD-1068) are also discussed. Preclinical results of blockade of calcium sensing receptor by the use of calcilytics such as calcitriol abrogates cardinal signs of asthma. Nevertheless, successful translation of promising preclinical data into clinically viable interventions remains a major challenge to the development of novel anti-asthmatics.
Toluene diisocyanate (TDI) is a major cause of chemical-induced occupational asthma, which contributes about 15% of global asthma burden. Resistance and compounded side effects associated with the use of corticosteroid in asthma necessitate the search for alternative drugs. Andrographolide (AGP), a naturally occurring diterpene lactone is known to exhibit various bioactivities. Its ability to ameliorate cardinal features of allergic asthma was previously suggested in an eosinophilic asthma endotype. However, its potential antiasthma activity and mechanism of action in a neutrophilic occupational asthma model, as well as its effect on epithelial dysfunction remain unknown. BALB/c mice were dermally sensitised with 0.3% TDI or acetone olive oil (AOO) vehicle on day 1 and 8, followed by 0.1% TDI intranasal challenge on days 15, 18 and 21. Endpoints were evaluated via bronchoalveolar lavage fluid (BALF) cell analysis, 2',7'-dichlorofluorescein diacetate (DCFDA) assays, immunoblotting, immunohistochemistry and methacholine challenge test. Decreases in total and differential leukocyte counts of BALF were recorded in AGP-treated animals. The compound dose-dependently reduced intracellular de-esterification of DCFDA, thus suggesting AGP's potential to inhibit intracellular reactive oxygen species (ROS). Mechanistically, the treatment prevented TDI-induced aberrant E-cadherin distribution and restored airway epithelial β-catenin at cell to cell contact site. Furthermore, AGP ameliorated TDI induced pulmonary collagen deposition. In addition, the treatment significantly upregulated pulmonary HO-1, Nrf2 and phospho-p38 levels. Airway hyperresponsiveness was markedly suppressed among AGP-treated animals. Collectively, these findings suggest AGP's protective function against TDI-induced airway epithelial barrier dysfunction and oxidative lung damage possibly through the upregulation of adherence junction proteins and the activation of p38/Nrf2 signalling. This study elucidates the therapeutic potential of AGP in the control and management of chemical-induced allergic asthma. To the best of our knowledge, the potential anti-asthma activity of AGP in TDI-induced occupational asthma has not been reported previously.
COPD pathogenesis is frequently associated with endoplasmic reticulum stress (ER stress) progression. Targeting the major unfolded protein response (UPR) branches in the ER stress pathway may provide pharmacotherapeutic selection strategies for treating COPD and enable relief from its symptoms. In this study, we aimed to systematically review the potential role of the ER stress inhibitors of major UPR branches (IRE1, PERK, and ATF6) in COPD-related studies and determine the current stage of knowledge in this field. The systematic review was carried out adhering to the PRISMA checklist based on published studies obtained from specific keyword searches of three databases, namely PubMed, ScienceDirect and Springer Database. The search was limited to the year 2000-2022 which includes all in vitro studies, in vivo studies and clinical trials related to the application of ER stress inhibitors toward COPD-induced models and disease. The risk of bias was evaluated using the QUIN, SYRCLE, revised Cochrane risk of bias tool for randomized trials (RoB 2.0) and NIH tool respectively. A total of 7828 articles were screened from three databases and a final total of 37 studies were included in the review. The ER stress and UPR pathways are potentially useful to prevent COPD progression and attenuate the exacerbation of COPD and related symptoms. Interestingly, the off-target effects from inhibition of the UPR pathway may be desirable or undesirable depending on context and therapeutic applications. Targeting the UPR pathway could have complex consequences as the production of ER molecules involved in folding may be impaired which could continuously provoke misfolding of proteins. Although several emerging compounds were noted to be potentially useful for targeted therapy against COPD, clinical studies have yet to be thoroughly explored.