Displaying all 3 publications

Abstract:
Sort:
  1. Al-Shargie F, Tang TB, Badruddin N, Kiguchi M
    Med Biol Eng Comput, 2018 Jan;56(1):125-136.
    PMID: 29043535 DOI: 10.1007/s11517-017-1733-8
    Mental stress has been identified as one of the major contributing factors that leads to various diseases such as heart attack, depression, and stroke. To avoid this, stress quantification is important for clinical intervention and disease prevention. This study aims to investigate the feasibility of exploiting electroencephalography (EEG) signals to discriminate between different stress levels. We propose a new assessment protocol whereby the stress level is represented by the complexity of mental arithmetic (MA) task for example, at three levels of difficulty, and the stressors are time pressure and negative feedback. Using 18-male subjects, the experimental results showed that there were significant differences in EEG response between the control and stress conditions at different levels of MA task with p values alpha rhythm power from one stress level to another level, p values alpha rhythm). The study demonstrated the feasibility of using EEG in classifying multilevel mental stress and reported alpha rhythm power at right prefrontal cortex as a suitable index.
    Matched MeSH terms: Alpha Rhythm/physiology
  2. Doufesh H, Ibrahim F, Ismail NA, Wan Ahmad WA
    J Altern Complement Med, 2014 Jul;20(7):558-62.
    PMID: 24827587 DOI: 10.1089/acm.2013.0426
    OBJECTIVES: This study investigated the effect of Muslim prayer (salat) on the α relative power (RPα) of electroencephalography (EEG) and autonomic nervous activity and the relationship between them by using spectral analysis of EEG and heart rate variability (HRV).

    METHODS: Thirty healthy Muslim men participated in the study. Their electrocardiograms and EEGs were continuously recorded before, during, and after salat practice with a computer-based data acquisition system (MP150, BIOPAC Systems Inc., Camino Goleta, California). Power spectral analysis was conducted to extract the RPα and HRV components.

    RESULTS: During salat, a significant increase (p

    Matched MeSH terms: Alpha Rhythm/physiology*
  3. Doufesh H, Faisal T, Lim KS, Ibrahim F
    Appl Psychophysiol Biofeedback, 2012 Mar;37(1):11-8.
    PMID: 21965118 DOI: 10.1007/s10484-011-9170-1
    This study investigated the proposition of relaxation offered by performing the Muslim prayers by measuring the alpha brain activity in the frontal (F3-F4), central (C3-C4), parietal (P3-P4), and occipital (O1-O2) electrode placements using the International 10-20 System. Nine Muslim subjects were asked to perform the four required cycles of movements of Dhuha prayer, and the EEG were subsequently recorded with open eyes under three conditions, namely, resting, performing four cycles of prayer while reciting the specific verses and supplications, and performing four cycles of acted salat condition (prayer movements without any recitations). Analysis of variance (ANOVA) tests revealed that there were no significant difference in the mean alpha relative power (RP(α)) between the alpha amplitude in the Dhuha prayer and the acted conditions in all eight electrode positions. However, the mean RP(α) showed higher alpha amplitude during the prostration position of the Dhuha prayer and acted condition at the parietal and occipital regions in comparison to the resting condition. Findings were similar to other studies documenting increased alpha amplitude in parietal and occipital regions during meditation and mental concentration. The incidence of increased alpha amplitude suggested parasympathetic activation, thus indicating a state of relaxation. Subsequent studies are needed to delineate the role of mental concentration, and eye focus, on alpha wave amplitude while performing worshipping acts.
    Matched MeSH terms: Alpha Rhythm/physiology*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links