Displaying all 3 publications

Abstract:
Sort:
  1. Aliyu IA, Ling KH, Md Hashim N, Chee HY
    Rev Med Virol, 2019 05;29(3):e2038.
    PMID: 30746844 DOI: 10.1002/rmv.2038
    Annexin A2 is a membrane scaffolding and binding protein, which mediated various cellular events. Its functions are generally affected by cellular localization. In the cytoplasm, they interacted with different phospholipid membranes in Ca2+ -dependent manner and play vital roles including actin binding, remodeling and dynamics, cytoskeletal rearrangement, and lipid-raft microdomain formation. However, upon cell exposure to certain stimuli, annexin A2 translocates to the external leaflets of the plasma membrane where annexin A2 was recently reported to serve as a virus receptor, play an important role in the formation of virus replication complex, or implicated in virus assembly and budding. Here, we review some of annexin A2 roles in virus infections and the potentiality of targeting annexin A2 in the design of novel and promising antivirus agent that may have a broader consequence in virus therapy.
    Matched MeSH terms: Annexin A2/metabolism*
  2. Islam MJ, Muntaha S, Masum MM, Nowshin S, Salam S, Haque M, et al.
    Asian Pac J Cancer Prev, 2024 Dec 01;25(12):4447-4455.
    PMID: 39733438 DOI: 10.31557/APJCP.2024.25.12.4447
    OBJECTIVE: This study investigated the potential anticancer properties of Myo-inositol on the DU-145 prostate cancer cell line.

    METHODS: The DU-145 cells have been treated to different doses of Myo-inositol in order to ascertain the half-maximal inhibitory concentration (IC50) using the trypan blue exclusion assay. The impact of Myo-inositol on proteomic profiles was evaluated using 2D gel electrophoresis and liquid chromatography-mass spectrometry (LC-MS).

    RESULTS: Myo-inositol significantly reduced DU-145 cell viability with an IC50 of 0.06 mg/ml (p<0.05). Proteomic analysis highlighted marked differences in protein expression between treated and untreated cells, particularly in proteins related to cytoskeletal regulation, apoptosis, and stress response. LC-MS further identified significant alterations in protein profiles, with suppression of proteins like Annexin A2 and Cofilin-1-A in controls, and upregulation of proteins such as Rho GTPase-activating protein, Apoptotic protease-activating factor 1 (APAF1), and TNF receptor-associated factor 2 (TRAF2) in treated samples (p<0.001), indicating modulation of key signaling pathways involved in tumor suppression and oncogenesis.

    CONCLUSION: Myo-inositol exhibits anticancer properties in prostate cancer cells by impacting cell viability and altering protein expression. While promising as an adjunctive treatment, further studies are needed to understand its mechanisms and potential in combination therapies for managing CRPC.

    Matched MeSH terms: Annexin A2/metabolism
  3. Mittal P, Klingler-Hoffmann M, Arentz G, Winderbaum L, Kaur G, Anderson L, et al.
    Biochim Biophys Acta Proteins Proteom, 2017 Jul;1865(7):846-857.
    PMID: 27784647 DOI: 10.1016/j.bbapap.2016.10.010
    The prediction of lymph node metastasis using clinic-pathological data and molecular information from endometrial cancers lacks accuracy and is therefore currently not routinely used in patient management. Consequently, although only a small percentage of patients with endometrial cancers suffer from metastasis, the majority undergo radical surgery including removal of pelvic lymph nodes. Upon analysis of publically available data and published research, we compiled a list of 60 proteins having the potential to display differential abundance between primary endometrial cancers with versus those without lymph node metastasis. Using data dependent acquisition LC-ESI-MS/MS we were able to detect 23 of these proteins in endometrial cancers, and using data independent LC-ESI-MS/MS the differential abundance of five of those proteins was observed. The localization of the differentially expressed proteins, was visualized using peptide MALDI MSI in whole tissue sections as well as tissue microarrays of 43 patients. The proteins identified were further validated by immunohistochemistry. Our data indicate that annexin A2 protein level is upregulated, whereas annexin A1 and α actinin 4 expression are downregulated in tumours with lymph node metastasis compared to those without lymphatic spread. Moreover, our analysis confirmed the potential of these markers, to be included in a statistical model for prediction of lymph node metastasis. The predictive model using highly ranked m/z values identified by MALDI MSI showed significantly higher predictive accuracy than the model using immunohistochemistry data. In summary, using publicly available data and complementary proteomics approaches, we were able to improve the prediction model for lymph node metastasis in EC.
    Matched MeSH terms: Annexin A2/metabolism*
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links