Displaying all 3 publications

Abstract:
Sort:
  1. Lee YH, Pang SW, Poh CL, Tan KO
    J Cancer Res Clin Oncol, 2016 Sep;142(9):1967-77.
    PMID: 27424190 DOI: 10.1007/s00432-016-2205-5
    PURPOSE: Members of paraneoplastic Ma (PNMA) family have been identified as onconeuronal antigens, which aberrant expressions in cancer cells of patients with paraneoplastic disorder (PND) are closely linked to manifestation of auto-immunity, neuro-degeneration, and cancer. The purpose of present study was to determine the role of PNMA5 and its functional relationship to MOAP-1 (PNMA4) in human cancer cells.

    METHODS: PNMA5 mutants were generated through deletion or site-directed mutagenesis and transiently expressed in human cancer cell lines to investigate their role in apoptosis, subcellular localization, and potential interaction with MOAP-1 through apoptosis assays, fluorescence microscopy, and co-immunoprecipitation studies, respectively.

    RESULTS: Over-expressed human PNMA5 exhibited nuclear localization pattern in both MCF-7 and HeLa cells. Deletion mapping and mutagenesis studies showed that C-terminus of PNMA5 is responsible for nuclear localization, while the amino acid residues (391KRRR) within the C-terminus of PNMA5 are required for nuclear targeting. Deletion mapping and co-immunoprecipitation studies showed that PNMA5 interacts with MOAP-1 and N-terminal domain of PNMA5 is required for interaction with MOAP-1. Furthermore, co-expression of PNMA5 and MOAP-1 in MCF-7 cells significantly enhanced chemo-sensitivity of MCF-7 to Etoposide treatment, indicating that PNMA5 and MOAP-1 interact synergistically to promote apoptotic signaling in MCF-7 cells.

    CONCLUSIONS: Our results show that PNMA5 promotes apoptosis signaling in HeLa and MCF-7 cells and interacts synergistically with MOAP-1 through its N-terminal domain to promote apoptosis and chemo-sensitivity in human cancer cells. The C-terminal domain of PNMA5 is required for nuclear localization; however, both N-and C-terminal domains of PNMA5 appear to be required for pro-apoptotic function.

    Matched MeSH terms: Apoptosis Regulatory Proteins/chemistry*
  2. Lee YH, Pang SW, Revai Lechtich E, Shah K, Simon SE, Ponnusamy S, et al.
    J Cancer Res Clin Oncol, 2020 Jul;146(7):1751-1764.
    PMID: 32377840 DOI: 10.1007/s00432-020-03231-9
    PURPOSE: Although important for apoptosis, the signaling pathway involving MOAP-1(Modulator of Apoptosis 1), RASSF1A (RAS association domain family 1A), and Bax (Bcl-2 associated X protein) is likely to be dysfunctional in many types of human cancers due to mechanisms associated with gene mutation and DNA hyper-methylation. The purpose of the present study was to assess the potential impact of generating physiologically relevant signaling pathway mediated by MOAP-1, Bax, and RASSF1A (MBR) in cancer cells and chemo-drug resistant cancer cells.

    METHODS: The tricistronic expression construct that encodes MOAP-1, Bax, and RASSF1A (MBR) or its mutant, MOAP-1∆BH3L, Bax and RASSF1A (MBRX) was expressed from an IRES (Internal Ribosome Entry Site)-based tricistronic expression vector in human breast cancer cells, including MCF-7, MCF-7-CR (cisplatin resistant) and triple negative breast cancer cells, BMET05, for functional characterization through in vitro and in vivo models.

    RESULTS: Transient expression of MBR potently promoted dose-dependent apoptotic signaling and chemo-sensitization in the cancer cells, as evidenced by loss of cell viability, nuclei condensation and Annexin-V positive staining while stable expression of MBR in MCF-7 cells significantly reduced the number of MBR stable clone by 86% and the stable clone exhibited robust chemo-drug sensitivity. In contrast, MBRX stable clone exhibited chemo-drug resistance while transiently over-expressed MOAP-1ΔBH3L inhibited the apoptotic activity of MBR. Moreover, the spheroids derived from the MBR stable clone displayed enhanced chemo-sensitivity and apoptotic activity. In mouse xenograft model, the tumors derived from MBR stable clone showed relatively high level of tumor growth retardation associated with the increase in apoptotic activity, leading to the decreases in both tumor weight and volume.

    CONCLUSIONS: Expression of MBR in cancer cells induces apoptotic cell death with enhanced chemo-sensitization requiring the BH3L domain of MOAP-1. In animal model, the expression of MBR significantly reduces the growth of tumors, suggesting that MBR is a potent apoptotic sensitizer with potential therapeutic benefits for cancer treatment.

    Matched MeSH terms: Apoptosis Regulatory Proteins/chemistry
  3. Mohamad Rosdi MN, Mohd Arif S, Abu Bakar MH, Razali SA, Mohamed Zulkifli R, Ya'akob H
    Apoptosis, 2018 01;23(1):27-40.
    PMID: 29204721 DOI: 10.1007/s10495-017-1434-7
    Annona muricata Linn or usually identified as soursop is a potential anticancer plant that has been widely reported to contain valuable chemopreventive agents known as annonaceous acetogenins. The antiproliferative and anticancer activities of this tropical and subtropical plant have been demonstrated in cell culture and animal studies. A. muricata L. exerts inhibition against numerous types of cancer cells, involving multiple mechanism of actions such as apoptosis, a programmed cell death that are mainly regulated by Bcl-2 family of proteins. Nonetheless, the binding mode and the molecular interactions of the plant's bioactive constituents have not yet been unveiled for most of these mechanisms. In the current study, we aim to elucidate the binding interaction of ten bioactive phytochemicals of A. muricata L. to three Bcl-2 family of antiapoptotic proteins viz. Bcl-2, Bcl-w and Mcl-1 using an in silico molecular docking analysis software, Autodock 4.2. The stability of the complex with highest affinity was evaluated using MD simulation. We compared the docking analysis of these substances with pre-clinical Bcl-2 inhibitor namely obatoclax. The study identified the potential chemopreventive agent among the bioactive compounds. We also characterized the important interacting residues of protein targets which involve in the binding interaction. Results displayed that anonaine, a benzylisoquinoline alkaloid, showed a high affinity towards the Bcl-2, thus indicating that this compound is a potent inhibitor of the Bcl-2 antiapoptotic family of proteins.
    Matched MeSH terms: Apoptosis Regulatory Proteins/chemistry
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links