Displaying all 2 publications

Abstract:
Sort:
  1. Sakurama K, Nishi K, Chuang VTG, Hashimoto M, Yamasaki K, Otagiri M
    Biol Pharm Bull, 2020;43(6):1023-1026.
    PMID: 32475912 DOI: 10.1248/bpb.b20-00205
    Aripiprazole (ARP) is one of antipsychotics and binds to human serum albumin (HSA) with a high affinity. In this study, we investigated the binding characteristics of ARP to oxidized HSA as observed in chronic disease conditions. Oxidized HSAs were prepared using chloramine-T (CT-HSA) or metal-catalyzed oxidation system (MCO-HSA) in vitro, respectively. An increase in the carbonyl content was confirmed in oxidized HSAs. From the results of circular dichroism (CD) and tryptophan fluorescence spectra, no significant structural change of oxidized HSAs was observed. These results indicate that prepared HSAs are mildly oxidized and well reflects the status of HSA during chronic diseases. However, oxidized HSAs were observed to have a significant decrease in binding to ARP. The results of the induced CD spectrum suggested that ARP bound to oxidized HSAs with a similar orientation. These results suggest that oxidation of HSA during chronic disease state significantly affected the microenvironment of the binding site for ARP and binding capacity of HSA to ARP.
    Matched MeSH terms: Aripiprazole/chemistry*
  2. Samiun WS, Ashari SE, Salim N, Ahmad S
    Int J Nanomedicine, 2020;15:1585-1594.
    PMID: 32210553 DOI: 10.2147/IJN.S198914
    BACKGROUND: Aripiprazole, which is a quinolinone derivative, has been widely used to treat schizophrenia, major depressive disorder, and bipolar disorder.

    PURPOSE: A Central Composite Rotatable Design (CCRD) of Response Surface Methodology (RSM) was used purposely to optimize process parameters conditions for formulating nanoemulsion containing aripiprazole using high emulsification methods.

    METHODS: This design is used to investigate the influences of four independent variables (overhead stirring time (A), shear rate (B), shear time (C), and the cycle of high-pressure homogenizer (D)) on the response variable namely, a droplet size (Y) of nanoemulsion containing aripiprazole.

    RESULTS: The optimum conditions suggested by the predicted model were: 120 min of overhead stirring time, 15 min of high shear homogenizer time, 4400 rpm of high shear homogenizer rate and 11 cycles of high-pressure homogenizer, giving a desirable droplet size of nanoemulsion containing aripiprazole of 64.52 nm for experimental value and 62.59 nm for predicted value. The analysis of variance (ANOVA) showed the quadratic polynomial fitted the experimental values with F-value (9.53), a low p-value (0.0003) and a non-significant lack of-fit. It proved that the models were adequate to predict the relevance response. The optimized formulation with a viscosity value of 3.72 mPa.s and pH value of 7.4 showed good osmolality value (297 mOsm/kg) and remained stable for three months in three different temperatures (4°C, 25°C, and 45°C).

    CONCLUSION: This proven that response surface methodology is an efficient tool to produce desirable droplet size of nanoemulsion containing aripiprazole for parenteral delivery application.

    Matched MeSH terms: Aripiprazole/chemistry*
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links