Since the increasing number of polybutylene adipate terephthalate (PBAT)-based plastics entering the environment, the search for sustainable treatment methods has become a primary focus of contemporary research. Composting offers a novel approach for managing biodegradable plastics. However, a significant challenge in the composting process is how to control nitrogen loss and enhance plastic degradation. In this context, the effect of various additives on nitrogen retention, PBAT plastics degradation, and microbial community dynamics during composting was investigated. The findings revealed that the addition of nitrogen-fixing bacteria Azotobacter vinelandii and biochar (AzBC) significantly improved nitrogen retention and accelerated PBAT rupture within 40 days of composting. Specifically, the PBAT degradation rate in the AzBC group reached 29.6%, which increased by 12.14% (P vinelandii offers promising sustainable prospects for enhancing PBAT plastic degradation and reducing nitrogen loss during composting.
A proteomic analysis of a soil-dwelling, plant growth-promoting Azotobacter vinelandii strain showed the presence of a protein encoded by the hypothetical Avin_16040 gene when the bacterial cells were attached to the Oryza sativa root surface. An Avin_16040 deletion mutant demonstrated reduced cellular adherence to the root surface, surface hydrophobicity, and biofilm formation compared to those of the wild type. By atomic force microscopy (AFM) analysis of the cell surface topography, the deletion mutant displayed a cell surface architectural pattern that was different from that of the wild type. Escherichia coli transformed with the wild-type Avin_16040 gene displayed on its cell surface organized motifs which looked like the S-layer monomers of A. vinelandii. The recombinant E. coli also demonstrated enhanced adhesion to the root surface.