Rattan is an important climbing palm taxon in Malaysian tropical rain forests. Many rattan species have unique structures directly associated with certain ant species. In this study, four rattan species (Daemonorops lewisiana, Calamus castaneus, Daemonorops geniculata and Korthalsia scortechinii) were inspected and documented in a field survey concerning their relationships with several ant species. We noticed that two rattan species (D. lewisiana and C. castaneus) were more likely to be associated with ants compared to their neighbouring rattan (Plectomia griffithii). However, D. lewisiana and C. castaneus did not directly provide shelters for ant colonies, but possessed unique structures: upward-pointing spines and funnel-shaped leaves, which are equipped to collect more litter than P. griffithii. To test our litter collecting hypothesis, we measured the inclination of spines from the stem. Our results showed the presence of ant colonies in the litter-collecting rattans (D. lewisiana and C. castaneus), which was significantly higher compared to a non-litter-collecting rattan (P. griffithii). We propose a complex and novel type of adaptation (litter-collection and provision of nesting materials) for rattans, which promotes interactions between the rattan and ants through the arrangements of leaves, leaflets, and spines. In return, the rattan may benefit from ants' services, such as protection, nutrient enhancement, and pollination.
Rattan spines are most often regarded as an identification trait and perhaps as a physical protection structure. In this study, we study the spinescence traits from five different species rattan: Daemonorops lewisiana, Daemonorops geniculata, Calamus castaneus, Plectomia griffithii, and Korthalsia scortechinii. We tested length, width, angle, strength, spine density, cross-section surface, spine color, and leaf trichomes (only for D. lewisiana, C. castaneus and D. geniculata). We also tested whether the spines were capable of deterring small climbing mammals (for Plectomia griffithii and Calamus castaneus) by using a choice selection experiment. Due to a variety of spine traits, we could not categorize whether any species is more or less spinescent than the others. We suggest that spines have a much more significant role than merely as a physical defense and work together with other rattan characteristics. This is also evidenced by our choice selection experiment, in which the spines on a single stem donot deter small climbing mammals. However, this is a work in progress, and we have outlined several alternative methods to be used in future work.