Displaying all 2 publications

Abstract:
Sort:
  1. Abdullah JM, Ahmad F, Ahmad KA, Ghazali MM, Jaafar H, Ideris A, et al.
    Neurol Res, 2007 Apr;29(3):239-42.
    PMID: 17509221
    Brain tumorigenesis is a complex process involving multiple genetic alterations. Cyclin D1 and BAX genes are two of the most important regulators in controlling the normal proliferation and apoptosis of cells, respectively. In this study, we analysed the possibilities of involvement of cyclin D1 and BAX genes in the gliomagenesis.
    Matched MeSH terms: Central Nervous System Neoplasms/genetics*
  2. Radzak S, Khair Z, Ahmad F, Idris Z, Yusoff A
    Turk Neurosurg, 2021;31(1):99-106.
    PMID: 33491172 DOI: 10.5137/1019-5149.JTN.27893-20.4
    AIM: To determine the mitochondrial microsatellite instability (mtMSI) status in a series of Malaysian patients with brain tumors. Furthermore, we analyzed whether the mtMSI status is associated with the clinicopathological features of the patients.

    MATERIAL AND METHODS: Forty fresh frozen tumor tissues along with blood samples of brain tumor patients were analyzed for mtMSI by PCR amplification of genomic DNAs, and the amplicons were directly sequenced in both directions using Sanger sequencing.

    RESULTS: Microsatellite analysis revealed that 20% (8 out of 40) of the tumors were mtMSI positive with a total of 8 mtMSI changes. All mtMSI markers were detected in D310 and D16184 of the D-loop region. Additionally, no significant association was observed between mtMSI status and clinicopathological features.

    CONCLUSION: The variations, specifically the mtMSI, suggest that the mitochondrial DNA (mtDNA) can be targeted for genomic alteration in brain tumors. Therefore, the specific role of mtDNA alteration in brain tumor development and prognosis requires further investigation.

    Matched MeSH terms: Central Nervous System Neoplasms/genetics
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links