Macrobrachium rosenbergii nodavirus (MrNv) poses a major threat to the prawn industry. Currently, no effective vaccine and treatment are available to prevent the spread of MrNv. Its infection mechanism and localisation in a host cell are also not well characterised. The MrNv capsid protein (MrNvc) produced in Escherichia coli self-assembled into virus-like particles (VLPs) resembling the native virus. Thus, fluorescein labelled MrNvc VLPs were employed as a model to study the virus entry and localisation in Spodoptera frugiperda, Sf9 cells. Through fluorescence microscopy and sub-cellular fractionation, the MrNvc was shown to enter Sf9 cells, and eventually arrived at the nucleus. The presence of MrNvc within the cytoplasm and nucleus of Sf9 cells was further confirmed by the Z-stack imaging. The presence of ammonium chloride (NH4Cl), genistein, methyl-β-cyclodextrin or chlorpromazine (CPZ) inhibited the entry of MrNvc into Sf9 cells, but cytochalasin D did not inhibit this process. This suggests that the internalisation of MrNvc VLPs is facilitated by caveolae- and clathrin-mediated endocytosis. The whole internalisation process of MrNvc VLPs into a Sf9 cell was recorded with live cell imaging. We have also identified a potential nuclear localisation signal (NLS) of MrNvc through deletion mutagenesis and verified by classical-NLS mapping. Overall, this study provides an insight into the journey of MrNvc VLPs in insect cells.
The role of the cytoskeleton, actin, and microtubules were examined during the process of Japanese encephalitis (JEV) infection in a human neuroblastoma cell line, IMR32. Cytochalasin D and nocodazole were used to depolymerise the cellular actin and microtubules, respectively, in order to study the effect of JEV infection in the cell. This study shows that depolymerisation of the actin cytoskeleton at early process of infection inhibits JEV infection in the cell; however infection was not inhibited when depolymerisation occurred at the later stage of infection. The microtubules, on the other hand, are required at 2 points in infection. The antigen production in the cells was inhibited when the infected cells were treated at time up to 2 hours after inoculation and there was no significant effect at later times, while the viable virus released continued to be affected until 10 hours after inoculation. In conclusion, infection of JEV in IMR32 cells required actin to facilitate early process in infection and the microtubular network is utilised as the transport system to the virus replication site and the release of mature virus.
The aim of this study was to determine the role of intracellular proteins in phagocytosis of opsonized Porphyromonas gingivalis by RAW264.7 cells, a murine macrophage-like cell line. This periodontopathogen was grown anaerobically and opsonized with an IgG2a murine monoclonal anti-P. gingivalis lipopolysaccharide antibody. RAW264.7 cells were preincubated with protein tyrosine kinase inhibitors (staurosporine and genistein), protein kinase C inhibitors (phorbol myristic acetate and bisindolylmaleimide), a serine/threonine phosphatase inhibitor (okadaic acid), a phosphatidylinositol 3-kinase inhibitor (worthmannin), phospholipase A2 inhibitors (bromophenacyl bromide and nordihydroguaiaretic acid), phospholipase C inhibitors (p-chloromercuriphenyl sulfonate and neomycin sulfate), an actin-filament depolymerizer (cytochalasin D), and a microtubule disrupting agent (colchicine). Inhibitor-treated macrophages were then incubated with the opsonized P. gingivalis and the phagocytosed cells determined microscopically. The results showed the percentage of the phagocytosed organisms decreased when the cells were preincubated with protein tyrosine kinase, protein kinase C, protein phosphatase and phosphatidylinositol 3-kinase inhibitors. Of interest, preincubation with phorbol myristic acetate for 30 min increased the ability of RAW264.7 cells to phagocytose the opsonized organisms. Phospholipase A2 and phospholipase C inhibitors only slightly reduced the number of phagocytosed organisms. The results indicated that opsonophagocytosis of P. gingivalis by RAW264.7 cells might be determined by the activation of protein tyrosine kinase, protein kinase C, protein phosphatases, and phosphatidylinositol 3-kinase inhibitor. Both phospholipase A2 and phospholipase C would appear to be involved to a lesser extent. The opsonophagocytosis of this periodontopathogen would also appear to be dependent upon actin and microtubule polymerization.