Eight strains of a lizard Leishmania species, L. tarentolae, were compared with four other saurian species [L. hoogstrali, L. adleri, L. agamae and Leishmania sp. LizS], with L. major from man and with Trypanosoma platydactyli, a putative lizard trypanosome, in terms of kinetoplast DNA minicircle and maxicircle sequences and in terms of nuclear chromosome patterns on orthogonal gel electrophoresis. The L. tarentolae strains fell into two major groups, one (group A) consisting of the L. tarentolae strains, UC, Krassner and Trager, derived from an Algerian gecko isolate and the other (group B) consisting of five L. tarentolae LEM strains isolated from geckos in southern France. T. platydactyli TPCL2, which was postulated by Wallbanks et al. to represent the lizard form of a French L. tarentolae strain, was closely related to the UC strain and not to the LEM strains, in all respects analyzed. Leishmania sp. LizS from a Mongolian gecko and L. hoogstrali from a Sudanese gecko showed some sequence similarities to the L. tarentolae strains, but the leishmanias said to be L. adleri from a Kenyan lacertid and L. agamae from an Israeli agamid showed no minicircle sequence similarities with lizard Leishmania and in fact were probably the same species. The maxicircle divergent region was larger in the group B strains than in the group A strains, but there were sequences in common with both groups, and not with L. hoogstrali and L. major. Four strains of L. tarentolae, the four other supposed saurian Leishmania species, three mammalian leishmanias, T. platydactyli and four other trypanosomes, T. cyclops (Malaysian macaque), T. conorrhini (Hawaiian reduviid bug), T. cruzi (man) and T. lewisi (feral rat) were analyzed for their contents of sterols and phosphoglyceride fatty acyl groups. T. platydactyli TPCL2 contained a sterol (5-dehydroepisterol), a phosphatidylcholine fatty acyl group (alpha-linolenic acid) and a phosphatidylethanolamine fatty acyl group (dihydrosterculic acid) characteristic of members of the genus Leishmania and not the genus Trypanosoma. The proportions of those lipids in the free sterol and phosphoglyceride fractions of T. platydactyli TPCL2 most closely resembled those seen in the Leishmania strains from Algerian, French, Mongolian and Sudanese geckos.
Lactobacillus plantarum PA18, a strain originally isolated from the leaves of Pandanus amaryllifolius, contains a pR18 plasmid. The pR18 plasmid is a 3211bp circular molecule with a G+C content of 35.8%. Nucleotide sequence analysis revealed two putative open reading frames, ORF1 and ORF2, in which ORF2 was predicted (317 amino acids) to be a replication protein and shared 99% similarity with the Rep proteins of pLR1, pLD1, pC30il, and pLP2000, which belong to the RCR pC194/pUB110 family. Sequence analysis also indicated that ORF1 was predicted to encode linA, an enzyme that enzymatically inactivates lincomycin. The result of Southern hybridization and mung bean nuclease treatment confirmed that pR18 replicated via the RCR mechanism. Phylogenetic tree analysis of pR18 plasmid proteins suggested that horizontal transfer of antibiotic resistance determinants without genes encoding mobilization has not only occurred between Bacillus and Lactobacillus but also between unrelated bacteria. Understanding this type of transfer could possibly play a key role in facilitating the study of the origin and evolution of lactobacillus plasmids. Quantitative PCR showed that the relative copy number of pR18 was approximately 39 copies per chromosome equivalent.