Displaying all 5 publications

Abstract:
Sort:
  1. Easton A
    BMJ, 1999 May 08;318(7193):1232.
    PMID: 10231244
    Matched MeSH terms: Encephalitis, Viral/veterinary
  2. Chua KB, Chua BH, Wang CW
    Malays J Pathol, 2002 Jun;24(1):15-21.
    PMID: 16329551
    In late 1998, a novel paramyxovirus named Nipah virus, emerged in Malaysia, causing fatal disease in domestic pigs and humans with substantial economic loss to the local pig industry. Pteropid fruitbats have since been identified as a natural reservoir host. Over the last two decades, the forest habitat of these bats in Southeast Asia has been substantially reduced by deforestation for pulpwood and industrial plantation. In 1997/1998, slash-and-burn deforestation resulted in the formation of a severe haze that blanketed much of Southeast Asia in the months directly preceding the Nipah virus disease outbreak. This was exacerbated by a drought driven by the severe 1997-1998 El Niño Southern Oscillation (ENSO) event. We present data suggesting that this series of events led to a reduction in the availability of flowering and fruiting forest trees for foraging by fruitbats and culminated in unprecedented encroachment of fruitbats into cultivated fruit orchards in 1997/1998. These anthropogenic events, coupled with the location of piggeries in orchards and the design of pigsties allowed transmission of a novel paramyxovirus from its reservoir host to the domestic pig and ultimately to the human population.
    Matched MeSH terms: Encephalitis, Viral/veterinary*
  3. Enserink M
    Science, 2000 Jul 28;289(5479):518-9.
    PMID: 10939954 DOI: 10.1126/science.289.5479.518
    Scientists are a step closer to unraveling a medical mystery that killed 105 people in Malaysia last year and destroyed the country's pig industry. The Nipah virus, which caused the disease, most likely originated in a native fruit bat species, Malaysian researchers reported here at a meeting last week. They say the findings will help Malaysian health authorities prevent future outbreaks of the Nipah virus. Others see the case as an argument for expanding research into infections that can leap the boundary between animals and humans.
    Matched MeSH terms: Encephalitis, Viral/veterinary
  4. Gibbs WW
    Sci. Am., 1999 Aug;281(2):80-7.
    PMID: 10443039
    Matched MeSH terms: Encephalitis, Viral/veterinary
  5. Kono Y, Tsukamoto K, Abd Hamid M, Darus A, Lian TC, Sam LS, et al.
    Am J Trop Med Hyg, 2001 5 19;63(1-2):94-101.
    PMID: 11358004
    A new virus named Sitiawan virus (SV) was isolated from sick broiler chicks in chicken embryos. The virus replicated well with cytopathogenic effect (CPE) in the chicken B-lymphocyte cell line LSCC-BK3. The virus was an enveloped RNA virus of approximately 41 nm in size with hemagglutinating activity (HA) to goose erythrocytes. It was cross-reactive with Japanese encephalitis virus (JEV), a member of flaviviruses by HA inhibition tests but not by cross-virus neutralization tests. The cDNA fragment of NS5 gene was amplified with primers corresponding to NS5 gene of flaviviruses. The nucleotide sequences were 92% homologous to Tembusu virus, a member of the mosquito-borne virus cluster of the genus Flavivirus. In cross-neutralization tests with Tembusu virus, antiserum to SV did not neutralize Tembusu virus, and antiserum to Tembusu virus neutralized more weakly to SV than against homologous virus. These results indicate that SV is a new virus which can be differentiated serologically from Tembusu virus but is otherwise similar with respect to nucleotide sequence. The virus causes encephalitis, growth retardation, and increased blood glucose levels in inoculated chicks.
    Matched MeSH terms: Encephalitis, Viral/veterinary*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links