Displaying all 2 publications

Abstract:
Sort:
  1. Tam SW, Feng R, Lau WK, Law AC, Yeung PK, Chung SK
    J Biol Chem, 2019 08 16;294(33):12495-12506.
    PMID: 31248984 DOI: 10.1074/jbc.RA118.005155
    Endothelin-1 (ET-1) is a neuroactive peptide produced by neurons, reactive astrocytes, and endothelial cells in the brain. Elevated levels of ET-1 have been detected in the post-mortem brains of individuals with Alzheimer's disease (AD). We have previously demonstrated that overexpression of astrocytic ET-1 exacerbates memory deficits in aged mice or in APPK670/M671 mutant mice. However, the effects of ET-1 on neuronal dysfunction remain elusive. ET-1 has been reported to mediate superoxide formation in the vascular system via NADPH oxidase (NOX) and to regulate the actin cytoskeleton of cancer cell lines via the cofilin pathway. Interestingly, oxidative stress and cofilin activation were both reported to mediate one of the AD histopathologies, cofilin rod formation in neurons. This raises the possibility that ET-1 mediates neurodegeneration via oxidative stress- or cofilin activation-driven cofilin rod formation. Here, we demonstrate that exposure to 100 nm ET-1 or to a selective ET type B receptor (ETB) agonist (IRL1620) induces cofilin rod formation in dendrites of primary hippocampal neurons, accompanied by a loss of distal dendrites and a reduction in dendritic length. The 100 nm IRL1620 exposure induced superoxide formation and cofilin activation, which were abolished by pretreatment with a NOX inhibitor (5 μm VAS2870). Moreover, IRL1620-induced cofilin rod formation was partially abolished by pretreatment with a calcineurin inhibitor (100 nm FK506), which suppressed cofilin activation. In conclusion, our findings suggest a role for ETB in neurodegeneration by promoting cofilin rod formation and dendritic loss via NOX-driven superoxide formation and cofilin activation.
    Matched MeSH terms: Endothelin-1/genetics
  2. Tan JW, Gupta T, Manosroi W, Yao TM, Hopkins PN, Williams JS, et al.
    JCI Insight, 2017 12 07;2(23).
    PMID: 29212952 DOI: 10.1172/jci.insight.95992
    Compared with persons of European descent (ED), persons of African descent (AD) have lower aldosterone (ALDO) levels, with the assumption being that the increased cardiovascular disease (CVD) risk associated with AD is not related to ALDO. However, the appropriateness of the ALDO levels for the volume status in AD is unclear. We hypothesized that, even though ALDO levels are lower in AD, they are inappropriately increased, and therefore, ALDO could mediate the increased CVD in AD. To test this hypothesis, we analyzed data from HyperPATH - 1,788 individuals from the total cohort and 765 restricted to ED-to-AD in a 2:1 match and genotyped for the endothelin-1 gene (EDN1). Linear regression analyses with adjustments were performed. In the total and restricted cohorts, PRA, ALDO, and urinary potassium levels were significantly lower in AD. However, in the AD group, greater ALDO dysregulation was present as evidenced by higher ALDO/plasma renin activity (PRA) ratios (ARR) and sodium-modulated ALDO suppression-to-stimulation indices. Furthermore, EDN1 minor allele carriers had significantly greater ARRs than noncarriers but only in the AD group. ARR levels were modulated by a significant interaction between EDN1 and AD. Thus, EDN1 variants may identify particularly susceptible ADs who will be responsive to treatment targeting ALDO-dependent pathways (e.g., mineralocorticoid-receptor antagonists).
    Matched MeSH terms: Endothelin-1/genetics*
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links