PURPOSE: This paper explores the effects of SQ in CVD.
METHODS: A systematic review of the literature was performed to identify relevant studies about SQ and CVD. A comprehensive search in Medline and Scopus for relevant studies published between the years 1946 and 2019 was performed. The main inclusion criteria were that the study was published in English; that the study reported association or effect of SQ and CVD; and that CVD should be related to lifestyle variables, aging, or experimentally induced conditions.
RESULTS: The literature searches identified 5562 potentially relevant articles, whereby 21 studies met the inclusion criteria. There were three human studies and 18 animal experimental studies included in this paper. Only one human study reported positive outcome of SQ in CVD. The remaining two studies reported inconsistent and/or no effect. For animal studies, 15 studies reported positive effect while the remaining reported negative and/or no effect of SQ on various related parameters.
CONCLUSIONS: This evidence-based review emphasizes the potential of SQ being used for cardiovascular-related diseases. The effect of SQ, especially of plant-based warrants further exploration. Controlled human observational studies should be performed to provide comprehensive evidence.
METHODS AND RESULTS: TQRF was extracted from N. sativa seeds using supercritical fluid extraction. The regulatory effects of TQRF at 80 microg/ml and TQ at 2 microg/ml on LDLR and HMGCR gene expression were investigated in HepG2 cells using quantitative real-time PCR. The TQ content in TQRF was 2.77% (w/w) and was obtained at a temperature of 40 degrees C and a pressure of 600 bar. Treatment of cells with TQRF and TQ resulted in a 7- and 2-fold upregulation of LDLR mRNA level, respectively, compared with untreated cells. The mRNA level of HMGCR was downregulated by 71 and 12%, respectively, compared with untreated cells.
CONCLUSION: TQRF and TQ regulated genes involved in cholesterol metabolism by two mechanisms, the uptake of low-density lipoprotein cholesterol via the upregulation of the LDLR gene and inhibition of cholesterol synthesis via the suppression of the HMGCR gene.