Displaying all 3 publications

Abstract:
Sort:
  1. Nematbakhsh S, Pei Pei C, Selamat J, Nordin N, Idris LH, Abdull Razis AF
    Genes (Basel), 2021 03 13;12(3).
    PMID: 33805667 DOI: 10.3390/genes12030414
    In the poultry industry, excessive fat deposition is considered an undesirable factor, affecting feed efficiency, meat production cost, meat quality, and consumer's health. Efforts to reduce fat deposition in economically important animals, such as chicken, can be made through different strategies; including genetic selection, feeding strategies, housing, and environmental strategies, as well as hormone supplementation. Recent investigations at the molecular level have revealed the significant role of the transcriptional and post-transcriptional regulatory networks and their interaction on modulating fat metabolism in chickens. At the transcriptional level, different transcription factors are known to regulate the expression of lipogenic and adipogenic genes through various signaling pathways, affecting chicken fat metabolism. Alternatively, at the post-transcriptional level, the regulatory mechanism of microRNAs (miRNAs) on lipid metabolism and deposition has added a promising dimension to understand the structural and functional regulatory mechanism of lipid metabolism in chicken. Therefore, this review focuses on the progress made in unraveling the molecular function of genes, transcription factors, and more notably significant miRNAs responsible for regulating adipogenesis, lipogenesis, and fat deposition in chicken. Moreover, a better understanding of the molecular regulation of lipid metabolism will give researchers novel insights to use functional molecular markers, such as miRNAs, for selection against excessive fat deposition to improve chicken production efficiency and meat quality.
    Matched MeSH terms: Lipogenesis/genetics*
  2. Naz T, Zhao XY, Li S, Saeed T, Ullah S, Nazir Y, et al.
    PMID: 39733936 DOI: 10.1016/j.bbalip.2024.159592
    SREBP1 is a transcription factor that influences lipogenesis by regulating key genes associated with lipid biosynthesis, while AMPK, modulates lipid metabolism by regulating acetyl-CoA carboxylase. The exact role of these metabolic regulators in oleaginous microbes remains unclear. This study identified and manipulated the genes encoding SREBP1 (sre1) and α1 subunit of AMPK (ampk-α1) in Mucor circinelloides WJ11. Individual overexpression of sre1 yielded 32.5 % lipids and 21 g/L biomass, while ampk-α1 deletion combined with sre1 overexpression yielded 42.5 % lipids and 25 g/L biomass in mutant strains. This increase correlated with upregulated expression of key lipogenic genes and enzyme activity, enhancing lipid production and biomass. These surges were correlated with the increased mRNA levels of key genes (acl, acc1, acc2, cme1, fas1, g6pdh1, g6pdh2 and 6pgdh2). Enzyme activity analysis further showed that upregulation of ACL, ACC, ME, FAS, G6PDH and 6PGDH might provide more precursors and NADPH for lipid biosynthesis in sre1 overexpressing strains. Conversely, the activities of these genes and enzymes were markedly downregulated in sre1 deleted mutants consistent with lower lipid production and biomass than the control. These findings open new avenues for research by exploring the coordinated role of sre1 and ampk-α1 in lipid metabolism in M. circinelloides.
    Matched MeSH terms: Lipogenesis/genetics
  3. Khatun J, Loh TC, Akit H, Foo HL, Mohamad R
    Anim Sci J, 2017 Sep;88(9):1406-1413.
    PMID: 28220633 DOI: 10.1111/asj.12775
    The present study assessed the effect of feeding palm oil (PO), sunflower oil (SO) and their combination on performance, fat deposition, fatty acid composition and lipogenic gene expression of broilers reared for 42 days. A total of 144 1-day-old broilers (Cobb500) were randomly allotted into four treatment diets with each having six replicates of six chicks in each replicate following a completely randomized design. Live weight gain and feed efficiency was significantly (P 
    Matched MeSH terms: Lipogenesis/genetics*
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links