Displaying all 3 publications

Abstract:
Sort:
  1. Muhammad Sakri MS, Tengku Din TADA, Jaafar H, Gopalan V, Wan Abdul Rahman WF
    Int J Immunopathol Pharmacol, 2022;36:20587384211059673.
    PMID: 35037503 DOI: 10.1177/20587384211059673
    Angiogenesis is the process of new vascular formation, which is derived from various factors. For suppressing cancer cell growth, targeting angiogenesis is one of the therapeutic approaches. Vascular endothelial growth factor family receptors, including Flt-1, Flk-1 and Flt-4, have been found to play an essential role in regulating angiogenesis. Rapamycin is a macrolide compound with anti-proliferative properties, while platelet factor-4 (PF-4) is an antiangiogenic ELR-negative chemokine. Rapamycin inhibits mTOR ligands activation, thus suppressing cell proliferation, while PF-4 inhibits cell proliferation through several mechanisms. In the present study, we evaluated the effects of rapamycin and platelet factor-4 toward breast carcinoma at the proteomic and genomic levels. A total of 60 N-Methyl-N-Nitrosourea-induced rat breast carcinomas were treated with rapamycin, platelet factor-4 and rapamycin+platelet factor-4. The tumours were subsequently subjected to immunohistochemical protein analysis and polymerase chain reaction gene analysis. Protein analysis was performed using a semiquantitative scoring method, while the mRNA expression levels were analysed based on the relative expression ratio. There was a significant difference in the protein and mRNA expression levels for the selected markers. In the rapamycin+platelet factor-4-treated group, the Flt-4 marker was downregulated, whereas there were no differences in the expression levels of other markers, such as Flt-1 and Flk-1. On the other hand, platelet factor-4 did not exhibit a superior angiogenic inhibiting ability in this study. Rapamycin is a potent antiangiogenic drug; however, platelet factor-4 proved to be a less effective drug of anti-angiogenesis on rat breast carcinoma model.
    Matched MeSH terms: Mammary Neoplasms, Experimental/genetics
  2. Tiash S, Chua MJ, Chowdhury EH
    Int J Oncol, 2016 Jun;48(6):2359-66.
    PMID: 27035628 DOI: 10.3892/ijo.2016.3452
    Treatment of breast cancer, the second leading cause of female deaths worldwide, with classical drugs is often accompanied by treatment failure and relapse of disease condition. Development of chemoresistance and drug toxicity compels compromising the drug concentration below the threshold level with the consequence of therapeutic inefficacy. Moreover, amplification and over-activation of proto-oncogenes in tumor cells make the treatment more challenging. The oncogene, ROS1 which is highly expressed in diverse types of cancers including breast carcinoma, functions as a survival protein aiding cancer progression. Thus we speculated that selective silencing of ROS1 gene by carrier-mediated delivery of siRNA might sensitize the cancer cells to the classical drugs at a relatively low concentration. In this investigation we showed that intracellular delivery of c-ROS1-targeting siRNA using pH-sensitive inorganic nanoparticles of carbonate apatite sensitizes mouse breast cancer cells (4T1) to doxorubicin, but not to cisplatin or paclitaxel, with the highest enhancement in chemosensitivity obtained at 40 nM of the drug concentration. Although intravenous administrations of ROS1-loaded nanoparticles reduced growth of the tumor, a further substantial effect on growth retardation was noted when the mice were treated with the siRNA- and Dox-bound particles, thus suggesting that silencing of ROS1 gene could sensitize the mouse breast cancer cells both in vitro and in vivo to doxorubicin as a result of synergistic effect of the gene knockdown and the drug action, eventually preventing activation of the survival pathway protein, AKT1. Our findings therefore provide valuable insight into the potential cross-talk between the pathways of ROS1 and doxorubicin for future development of effective therapeutics for breast cancer.
    Matched MeSH terms: Mammary Neoplasms, Experimental/genetics
  3. Karimian H, Fadaeinasab M, Moghadamtousi SZ, Hajrezaei M, Zahedifard M, Razavi M, et al.
    Cell Physiol Biochem, 2015;36(3):988-1003.
    PMID: 26087920 DOI: 10.1159/000430273
    BACKGROUND: Tanacetum polycephalum L. Schultz-Bip is a member of the Asteraceae family. This study evaluated the chemopreventive effect of a T. polycephalum hexane extract (TPHE) using in in vivo and in vitro models.

    METHODS AND RESULTS: Five groups of rats: normal control, cancer control, TPHE low dose, TPHE high dose and positive control (tamoxifen) were used for the in vivo study. Histopathological examination showed that TPHE significantly suppressed the carcinogenic effect of LA7 tumour cells. The tumour sections from TPHE-treated rats demonstrated significantly reduced expression of Ki67 and PCNA compared to the cancer control group. Using a bioassay-guided approach, the cytotoxic compound of TPHE was identified as a tricyclic sesquiterpene lactone, namely, 8β- hydroxyl- 4β, 15- dihydrozaluzanin C (HDZC). Signs of early and late apoptosis were observed in MCF7 cells treated with HDZC and were attributed to the mitochondrial intrinsic pathway based on the up-regulation of Bax and the down-regulation of Bcl-2. HDZC induced cell cycle arrest in MCF7 cells and increased the expression of p21 and p27 at the mRNA and protein levels.

    CONCLUSION: This results of this study substantiate the anticancer effect of TPHE and highlight the involvement of HDZC as one of the contributing compounds that act by initiating mitochondrial-mediated apoptosis.

    Matched MeSH terms: Mammary Neoplasms, Experimental/genetics
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links