Displaying all 2 publications

Abstract:
Sort:
  1. Sin YW, Annavi G, Newman C, Buesching C, Burke T, Macdonald DW, et al.
    Mol Ecol, 2015 Jun;24(12):3138-50.
    PMID: 25913367 DOI: 10.1111/mec.13217
    The major histocompatibility complex (MHC) plays a crucial role in the immune system, and in some species, it is a target by which individuals choose mates to optimize the fitness of their offspring, potentially mediated by olfactory cues. Under the genetic compatibility hypothesis, individuals are predicted to choose mates with compatible MHC alleles, to increase the fitness of their offspring. Studies of MHC-based mate choice in wild mammals are under-represented currently, and few investigate more than one class of MHC genes. We investigated mate choice based on the compatibility of MHC class I and II genes in a wild population of European badgers (Meles meles). We also investigated mate choice based on microsatellite-derived pairwise relatedness, to attempt to distinguish MHC-specific effects from genomewide effects. We found MHC-assortative mating, based on MHC class II, but not class I genes. Parent pairs had smaller MHC class II DRB amino acid distances and smaller functional distances than expected from random pairings. When we separated the analyses into within-group and neighbouring-group parent pairs, only neighbouring-group pairs showed MHC-assortative mating, due to similarity at MHC class II loci. Our randomizations showed no evidence of genomewide-based inbreeding, based on 35 microsatellite loci; MHC class II similarity was therefore the apparent target of mate choice. We propose that MHC-assortative mate choice may be a local adaptation to endemic pathogens, and this assortative mate choice may have contributed to the low MHC genetic diversity in this population.
    Matched MeSH terms: Mating Preference, Animal*
  2. Schilthuizen M, Craze PG, Cabanban AS, Davison A, Stone J, Gittenberger E, et al.
    J Evol Biol, 2007 Sep;20(5):1941-9.
    PMID: 17714311
    Although the vast majority of higher animals are fixed for one chiral morph or another, the cause for this directionality is known in only a few cases. In snails, for example, rare individuals of the opposite coil are unable to mate with individuals of normal coil, so directionality is maintained by frequency-dependent selection. The snail subgenus Amphidromus presents an unexplained exception, because dextral (D) and sinistral (S) individuals occur sympatrically in roughly equal proportions (so-called 'antisymmetry') in most species. Here we show that in Amphidromus there is sexual selection for dimorphism, rather than selection for monomorphism. We found that matings between D and S individuals occur more frequently than expected by chance. Anatomical investigations showed that the chirality of the spermatophore and the female reproductive tract probably allow a greater fecundity in such inter-chiral matings. Computer simulation confirms that under these circumstances, sustained dimorphism is the expected outcome.
    Matched MeSH terms: Mating Preference, Animal*
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links