Displaying publications 1 - 20 of 50 in total

Abstract:
Sort:
  1. Akyuz E, Kullu I, Arulsamy A, Shaikh MF
    ACS Chem Neurosci, 2021 04 21;12(8):1281-1292.
    PMID: 33813829 DOI: 10.1021/acschemneuro.1c00083
    Epilepsy is a result of unprovoked, uncontrollable, and repetitive outburst of abnormal and excessive electrical discharges, known as seizures, in the neurons. Epilepsy is a devastating neurological condition that affects 70 million people globally. Unfortunately, only two-thirds of epilepsy patients respond to antiepileptic drugs while others become drug resistant and may be more prone to epilepsy comorbidities such as SUDEP. Oxidative stress, mitochondrial dysfunction, imbalance in the excitatory and inhibitory neurotransmitters, and neuroinflammation are some of the common pathologies of neurological disorders and epilepsy. Studies suggests that melatonin, a pineal hormone that governs sleep-wake cycles, may be neuroprotective against neurological disorders and thus may be translated as an antiepileptic as well. Melatonin has been shown to be an antioxidant, antiexcitotoxic, and anti-inflammatory hormone/molecule in neurodegenerative diseases, which may contribute to its antiepileptic and neuroprotective properties in epilepsy as well. In addition, melatonin has evidently been shown to play a regulatory role in the cardiorespiratory system and sleep-wake cycles, which may have positive implications toward epilepsy associated comorbidities, such as SUDEP. However, studies investigating the changes in melatonin release due to epilepsy and melatonin's antiepileptic role have been inconclusive and scarce, respectively. Thus, this comprehensive review aims to summarize and elucidate the potential role of melatonin in the pathogenesis of epilepsy and its comorbidities, in hopes to develop new diagnostic and therapeutic approaches that will improve the lives of epileptic patients, particularly those who are drug resistant.
    Matched MeSH terms: Melatonin
  2. Almabhouh FA, Singh HJ
    Andrologia, 2018 Feb;50(1).
    PMID: 28497500 DOI: 10.1111/and.12814
    This study examines the effect of melatonin on leptin-induced changes in transition of histone to protamine in adult rats during spermatogenesis. Twelve-week-old Sprague-Dawley rats were randomised into control, leptin-, leptin-melatonin-10-, leptin-melatonin-20- and melatonin-10-treated groups with six rats per group. Leptin was given via intraperitoneal injections (i.p.) daily for 42 days (60 μg/kg body weight). Rats in the leptin- and melatonin-treated groups were given either 10 or 20 mg day-1  kg-1 body weight of leptin in drinking water. Melatonin-10-treated group received only 10 mg of melatonin day-1  kg-1 body weight in drinking water for 42 days. Control rats received 0.1 ml of 0.9% saline. Upon completion of the treatment, sperm count, morphology and histone-to-protamine ratio were estimated. Gene expression of HAT, HDAC1, HDAC2, H2B, H2A, H1, PRM1, PRM2, TNP1 and TNP2 was determined. Data were analysed using ANOVA. Sperm count was significantly lower, whereas the fraction of spermatozoa with abnormal morphology, the ratio of histone-to-protamine transition and the expressions of HAT, HDAC1, HDAC2, H2B, H2A, H1, PRM1 were significantly higher in leptin-treated rats than those in controls or melatonin-treated rats. It appears that exogenous leptin administration adversely affects histone-to-protamine transition, which is prevented by concurrent administration of melatonin.
    Matched MeSH terms: Melatonin/pharmacology*
  3. Mihardja M, Roy J, Wong KY, Aquili L, Heng BC, Chan YS, et al.
    Ann N Y Acad Sci, 2020 10;1478(1):43-62.
    PMID: 32700392 DOI: 10.1111/nyas.14436
    Alzheimer's disease (AD) is an age-related neurodegenerative disorder characterized by the hallmark pathologies of amyloid-beta plaques and neurofibrillary tangles. Symptoms of this devastating disease include behavioral changes and deterioration of higher cognitive functions. Impairment of neurogenesis has also been shown to occur in AD, which adversely impacts new neuronal cell growth, differentiation, and survival. This impairment possibly results from the cumulative effects of the various pathologies of AD. Preclinical studies have suggested that the administration of melatonin-the pineal hormone primarily responsible for the regulation of the circadian rhythm-targets the effects of AD pathologies and improves cognitive impairment. It is postulated that by mitigating the effect of these pathologies, melatonin can also rescue neurogenesis impairment. This review aims to explore the effect of AD pathologies on neurogenesis, as well as the mechanisms by which melatonin is able to ameliorate AD pathologies to potentially promote neurogenesis.
    Matched MeSH terms: Melatonin/genetics*; Melatonin/therapeutic use
  4. Lim MS, Antony JJ, Islam SM, Suhana Z, Sreeramanan S
    Appl Biochem Biotechnol, 2017 Jan;181(1):15-31.
    PMID: 27461541 DOI: 10.1007/s12010-016-2196-3
    Dendrobium hybrid orchid is popular in orchid commercial industry due to its short life cycle and ability to produce various types of flower colours. This study was conducted to identify the morphological, biochemical and scanning electron microscopy (SEM) analysis in the Dendrobium sonia-28 orchid plants. In this study, 0.05 and 0.075 % of colchicine-treated Dendrobium sonia-28 (4-week-old culture) protocorm-like bodies (PLBs) were treated in different concentrations of melatonin (MEL) posttreatments (0, 0.05, 0.1, 0.5, 1, 5 and 10 μM). Morphological parameters such as number of shoots, growth index and number of PLBs were determined. In the 0.05 and 0.075 % of colchicine-treated PLBs which were posttreated with 0.05 μM MEL resulted in the highest value of the morphological parameters tested based on the number of shoots (84.5 and 96.67), growth index (16.94 and 12.15) and number of PLBs (126.5 and 162.33), respectively. SEM analysis of the 0.05 μM MEL posttreatment on both the colchicine-treated regenerated PLBs showed irregular cell lineages, and some damages occurred on the stomata. This condition might be due to the effect of plasmolyzing occurred in the cell causing irregular cell lineages.
    Matched MeSH terms: Melatonin/pharmacology
  5. Wong KC, Sankaran S, Jayapalan JJ, Subramanian P, Abdul-Rahman PS
    Arch Insect Biochem Physiol, 2021 May;107(1):e21785.
    PMID: 33818826 DOI: 10.1002/arch.21785
    Mutant lethal giant larvae (lgl) flies (Drosophila melanogaster) are known to develop epithelial tumors with invasive characteristics. The present study has been conducted to investigate the influence of melatonin (0.025 mM) on behavioral responses of lgl mutant flies as well as on biochemical indices (redox homeostasis, carbohydrate and lipid metabolism, transaminases, and minerals) in hemolymph, and head and intestinal tissues. Behavioral abnormalities were quantitatively observed in lgl flies but were found normalized among melatonin-treated lgl flies. Significantly decreased levels of lipid peroxidation products and antioxidants involved in redox homeostasis were observed in hemolymph and tissues of lgl flies, but had restored close to normalcy in melatonin-treated flies. Carbohydrates including glucose, trehalose, and glycogen were decreased and increased in the hemolymph and tissues of lgl and melatonin-treated lgl flies, respectively. Key enzymes of carbohydrate metabolism showed a significant increment in their levels in lgl mutants but had restored close to wild-type baseline levels in melatonin-treated flies. Variables of lipid metabolism showed significantly inverse levels in hemolymph and tissues of lgl flies, while normalization of most of these variables was observed in melatonin-treated mutants. Lipase, chitinase, transaminases, and alkaline phosphatase showed an increment in their activities and minerals exhibited decrement in lgl flies; reversal of changes was observed under melatonin treatment. The impairment of cognition, disturbance of redox homeostasis and metabolic reprogramming in lgl flies, and restoration of normalcy in all these cellular and behavioral processes indicate that melatonin could act as oncostatic and cytoprotective agents in Drosophila.
    Matched MeSH terms: Melatonin/pharmacology*
  6. Almabhouh FA, Osman K, Ibrahim SF, Gupalo S, Gnanou J, Ibrahim E, et al.
    Asian J Androl, 2016 10 18;19(6):647-654.
    PMID: 27748315 DOI: 10.4103/1008-682X.183379
    This study examined the effects of melatonin on leptin-induced changes in sperm parameters in adult rats. Five groups of Sprague-Dawley rats were treated with either leptin or leptin and melatonin or melatonin for 6 weeks. Leptin was given daily via the intraperitoneal route (60 μg kg-1 body weight) and melatonin was given in drinking water (10 mg kg-1 or 20 mg kg-1 body weight per day). Upon completion, sperm count, sperm morphology, 8-hydroxy-2-deoxyguanosine, Comet assay, TUNEL assay, gene expression profiles of antioxidant enzymes, respiratory chain reaction enzymes, DNA damage, and apoptosis genes were estimated. Data were analyzed using ANOVA. Sperm count was significantly lower whereas the fraction of sperm with abnormal morphology, the level of 8-hydroxy-2-deoxyguanosine, and sperm DNA fragmentation were significantly higher in rats treated with leptin only. Microarray analysis revealed significant upregulation of apoptosis-inducing factor, histone acetyl transferase, respiratory chain reaction enzyme, cell necrosis and DNA repair genes, and downregulation of antioxidant enzyme genes in leptin-treated rats. Real-time polymerase chain reaction showed significant decreases in glutathione peroxidase 1 expression with increases in the expression of apoptosis-inducing factor and histone acetyl transferase in leptin-treated rats. There was no change in the gene expression of caspase-3 (CASP-3). In conclusion, the adverse effects of leptin on sperm can be prevented by concurrent melatonin administration.
    Matched MeSH terms: Melatonin/pharmacology*
  7. Teoh AN, Kaur S, Shafie SR, Shukri NHM, Bustami NA, Takahashi M, et al.
    BMC Pregnancy Childbirth, 2023 Jul 04;23(1):491.
    PMID: 37403031 DOI: 10.1186/s12884-023-05796-y
    Chrononutrition emerges as a novel approach to promote circadian alignment and metabolic health by means of time-of-the-day dietary intake. However, the relationship between maternal circadian rhythm and temporal dietary intake during pregnancy remains understudied. This study aimed to determine the change in melatonin levels in pregnant women across gestation and its association with temporal energy and macronutrient intake. This was a prospective cohort involving 70 healthy primigravidas. During the second and third trimesters, pregnant women provided salivary samples collected at 9:00, 15:00, 21:00, and 3:00 h over a 24 h day for melatonin assay. Data on chrononutrition characteristics were collected using a 3-day food record. Parameters derived from melatonin measurements including mean, amplitude, maximal level, area under the curve with respect to increase (AUCI), and area under the curve with respect to ground (AUCG) were computed. A rhythmic melatonin secretion over the day that remained stable across trimesters was observed among the pregnant women. There was no significant elevation in salivary melatonin levels as pregnancy advanced. In the second trimester, higher energy intake during 12:00-15:59 h and 19:00-06:59 h predicted a steeper melatonin AUCI (β=-0.32, p = 0.034) and higher AUCG (β = 0.26, p = 0.042), respectively. Macronutrient intake within 12:00-15:59 h was negatively associated with mean melatonin (Fat: β=-0.28, p = 0.041) and AUCG (Carbohydrate: β=-0.37, p = 0.003; Protein: β=-0.27, p = 0.036; Fat: β=-0.32, p = 0.014). As pregnant women progressed from the second to the third trimester, a flatter AUCI was associated with a reduced carbohydrate intake during 12:00-15:59 h (β=-0.40, p = 0.026). No significant association was detected during the third trimester. Our findings show that higher energy and macronutrient intakes particularly during 12:00-15:59 h and 19:00-06:59 h are associated with the disparities in maternal melatonin levels. Findings suggest the potential of time-based dietary approaches to entrain circadian rhythm in pregnant women.
    Matched MeSH terms: Melatonin*
  8. Kaur S, Teoh AN, Shukri NHM, Shafie SR, Bustami NA, Takahashi M, et al.
    BMC Pregnancy Childbirth, 2020 Feb 11;20(1):96.
    PMID: 32046676 DOI: 10.1186/s12884-020-2797-2
    BACKGROUND: Circadian rhythm plays an important role as our internal body's clock that synchronizes behavior and physiology according to the external 24-h light-dark cycle. Past studies have associated disrupted circadian rhythm with higher risk of miscarriages, preterm birth and low birth weights. This paper described the protocol of a prospective cohort study which aims to determine the circadian rhythm in pregnant women, identify its association with maternal factors during pregnancy, gestational weight gain, birth and infant outcomes.

    METHODS: Ten government maternal and child health clinics in Kuala Lumpur, Malaysia will be randomly selected. Sample size of 438 first-trimester pregnant women will be followed-up until the birth of their infant. Salivary melatonin and cortisol concentration among subsample will be determined using enzyme-linked immunosorbent assay. Data on sleep quality, psychological distress and morningness/eveningness chronotype of pregnant women will be collected using validated questionnaires. Pedometer will be used to measure 5-day physical activity data. Total gestational weight gain will be determined at the end of pregnancy. Utilization of 3-day food record is to capture meal timing and nutrient intake. All measurements will be done in 2nd and 3rd trimester. Birth outcomes will be collected through clinic records and Centers for Disease Control and Prevention (CDC) Neonatal questionnaire. Infants will be followed-up at 6 and 12 months old to obtain anthropometric measurements.

    DISCUSSION: There is a growing recognition of the role of maternal circadian rhythm, which entrains fetal circadian rhythms that may subsequently have long-term health consequences. The present study will identify the effect of circadian rhythm on pregnancy outcomes and infant growth in the first year of life.

    Matched MeSH terms: Melatonin/analysis
  9. Srinivasan V, Pandi-Perumal SR, Cardinali DP, Poeggeler B, Hardeland R
    Behav Brain Funct, 2006 May 04;2:15.
    PMID: 16674804
    Increased oxidative stress and mitochondrial dysfunction have been identified as common pathophysiological phenomena associated with neurodegenerative disorders such as Alzheimer's disease (AD), Parkinson's disease (PD) and Huntington's disease (HD). As the age-related decline in the production of melatonin may contribute to increased levels of oxidative stress in the elderly, the role of this neuroprotective agent is attracting increasing attention. Melatonin has multiple actions as a regulator of antioxidant and prooxidant enzymes, radical scavenger and antagonist of mitochondrial radical formation. The ability of melatonin and its kynuramine metabolites to interact directly with the electron transport chain by increasing the electron flow and reducing electron leakage are unique features by which melatonin is able to increase the survival of neurons under enhanced oxidative stress. Moreover, antifibrillogenic actions have been demonstrated in vitro, also in the presence of profibrillogenic apoE4 or apoE3, and in vivo, in a transgenic mouse model. Amyloid-beta toxicity is antagonized by melatonin and one of its kynuramine metabolites. Cytoskeletal disorganization and protein hyperphosphorylation, as induced in several cell-line models, have been attenuated by melatonin, effects comprising stress kinase downregulation and extending to neurotrophin expression. Various experimental models of AD, PD and HD indicate the usefulness of melatonin in antagonizing disease progression and/or mitigating some of the symptoms. Melatonin secretion has been found to be altered in AD and PD. Attempts to compensate for age- and disease-dependent melatonin deficiency have shown that administration of this compound can improve sleep efficiency in AD and PD and, to some extent, cognitive function in AD patients. Exogenous melatonin has also been reported to alleviate behavioral symptoms such as sundowning. Taken together, these findings suggest that melatonin, its analogues and kynuric metabolites may have potential value in prevention and treatment of AD and other neurodegenerative disorders.
    Matched MeSH terms: Melatonin
  10. Loganathan K, Moriya S, Parhar IS
    Biochem Biophys Res Commun, 2018 02 12;496(3):927-933.
    PMID: 29395088 DOI: 10.1016/j.bbrc.2018.01.117
    Gonadotrophin-releasing hormone (GnRH) expression is associated with the two-pore domain potassium ion (K+) channel-related K+ (TREK) channel trek2a expression and melatonin levels. We aimed to investigate correlation of trek2a expression with gnrh3 expression, and regulatory mechanisms of trek2a expression by the melatonin receptor Mt1 and α2-adrenoceptor which are regulated by melatonin. trek2a specific siRNA, Mt1 antagonist luzindole and α2-adrenoceptor antagonist prazosin were administered into the adult zebrafish brain and gene expressions were examined by real-time PCR. trek2a specific siRNA administration significantly reduced expression levels of trek2a, gnrh3 and mt1. Luzindole administration suppressed trek2a and gnrh3 expressions. Prazosin administration reduced trek2a and gnrh3 expressions. It is suggested that Trek2a regulates gnrh3 expression under the control of Mt1 and α2-adrenoceptor.
    Matched MeSH terms: Melatonin/metabolism*; Receptor, Melatonin, MT1/metabolism*
  11. Ng KY, Leong MK, Liang H, Paxinos G
    Brain Struct Funct, 2017 Sep;222(7):2921-2939.
    PMID: 28478550 DOI: 10.1007/s00429-017-1439-6
    Melatonin, through its different receptors, has pleiotropic functions in mammalian brain. Melatonin is secreted mainly by the pineal gland and exerts its effects via receptor-mediated and non-receptor-mediated actions. With recent advancement in neuroanatomical mapping, we may now understand better the localizations of the two G protein-coupled melatonin receptors MT1 and MT2. The abundance of these melatonin receptors in respective brain regions suggests that receptor-mediated actions of melatonin might play crucial roles in the functions of central nervous system. Hence, this review aims to summarize the distribution of melatonin receptors in the brain and to discuss the putative functions of melatonin in the retina, cerebral cortex, reticular thalamic nucleus, habenula, hypothalamus, pituitary gland, periaqueductal gray, dorsal raphe nucleus, midbrain and cerebellum. Studies on melatonin receptors in the brain are important because cumulative evidence has pointed out that melatonin receptors not only play important physiological roles in sleep, anxiety, pain and circadian rhythm, but might also be involved in the pathogenesis of a number of neurodegenerative diseases including Alzheimer's disease, Parkinson's disease and Huntington's disease.
    Matched MeSH terms: Melatonin; Receptors, Melatonin
  12. Srinivasan V, Spence DW, Pandi-Perumal SR, Trakht I, Esquifino AI, Cardinali DP, et al.
    Breast Cancer Res Treat, 2008 Apr;108(3):339-50.
    PMID: 17541739
    Although many factors have been suggested as causes for breast cancer, the increased incidence of the disease seen in women working in night shifts led to the hypothesis that the suppression of melatonin by light or melatonin deficiency plays a major role in cancer development. Studies on the 7,12-dimethylbenz[a]anthracene and N-methyl-N-nitrosourea experimental models of human breast cancer indicate that melatonin is effective in reducing cancer development. In vitro studies in MCF-7 human breast cancer cell line have shown that melatonin exerts its anticarcinogenic actions through a variety of mechanisms, and that it is most effective in estrogen receptor (ER) alpha-positive breast cancer cells. Melatonin suppresses ER gene, modulates several estrogen dependent regulatory proteins and pro-oncogenes, inhibits cell proliferation, and impairs the metastatic capacity of MCF-7 human breast cancer cells. The anticarcinogenic action on MCF-7 cells has been demonstrated at the physiological concentrations of melatonin attained at night, suggesting thereby that melatonin acts like an endogenous antiestrogen. Melatonin also decreases the formation of estrogens from androgens via aromatase inhibition. Circulating melatonin levels are abnormally low in ER-positive breast cancer patients thereby supporting the melatonin hypothesis for breast cancer in shift working women. It has been postulated that enhanced endogenous melatonin secretion is responsible for the beneficial effects of meditation as a form of psychosocial intervention that helps breast cancer patients.
    Matched MeSH terms: Melatonin/physiology*
  13. Prodhan AHMSU, Cavestro C, Kamal MA, Islam MA
    CNS Neurol Disord Drug Targets, 2021;20(8):736-754.
    PMID: 34348635 DOI: 10.2174/1871527320666210804155617
    Alzheimer’s disease (AD) is a progressive neurodegenerative disorder characterized by sleep, behavioral, memory, and cognitive deteriorations. Sleep disturbance (SD) is a major disease burden in AD, which has a reciprocal relationship with AD pathophysiology. It aggravates memory, behavioral, and cognitive complications in AD. Different studies have found that melatonin hormone levels reduce even in the pre-clinical stages of AD. Melatonin is the primary sleep-regulating hormone and a potent antioxidant with neuroprotective roles. The decrease in melatonin levels can thus promote SD and AD neuropathology. Exogenous melatonin has the potential to alleviate neuropathology and SD in AD by different mechanisms. Various studies have been conducted to assess the efficacy of exogenous melatonin to treat SD in AD. Though most of the studies suggest that melatonin is useful to ameliorate SD in AD, the remaining studies show opposite results. The timing, dosage, and duration of melatonin administration along with disease condition, genetic, environmental, and some other factors can be responsible for the discrepancies between the studies. More extensive trials with longer durations and higher dosage forms and studies including bright light therapy and melatonin agonists (ramelteon, agomelatine, and tasimelteon) should be performed to determine the efficacy of melatonin to treat SD in AD.
    Matched MeSH terms: Melatonin/therapeutic use*
  14. Tan HY, Ng KY, Koh RY, Chye SM
    Cell Mol Neurobiol, 2020 Jan;40(1):25-51.
    PMID: 31435851 DOI: 10.1007/s10571-019-00724-1
    The progressive loss of structure and functions of neurons, including neuronal death, is one of the main factors leading to poor quality of life. Promotion of functional recovery of neuron after injury is a great challenge in neuroregenerative studies. Melatonin, a hormone is secreted by pineal gland and has antioxidative, anti-inflammatory, and anti-apoptotic properties. Besides that, melatonin has high cell permeability and is able to cross the blood-brain barrier. Apart from that, there are no reported side effects associated with long-term usage of melatonin at both physiological and pharmacological doses. Thus, in this review article, we summarize the pharmacological effects of melatonin as neuroprotectant in central nervous system injury, ischemic-reperfusion injury, optic nerve injury, peripheral nerve injury, neurotmesis, axonotmesis, scar formation, cell degeneration, and apoptosis in rodent models.
    Matched MeSH terms: Melatonin/pharmacology; Melatonin/therapeutic use*; Melatonin/chemistry
  15. Zakaria R, Ahmi A, Ahmad AH, Othman Z
    Chronobiol Int, 2021 01;38(1):27-37.
    PMID: 33164592 DOI: 10.1080/07420528.2020.1838534
    This study presents a bibliometric analysis of the publications on melatonin research from the Scopus database during the period 2015-2019. Based on the keywords used, which are related to melatonin in the article title, the study retrieved 4411 documents for further analysis using various tools. We used Microsoft Excel to conduct the frequency analysis, VOSviewer for data visualization, and Harzing's Publish or Perish for citation metrics and analysis. This study reports the results using standard bibliometric indicators such as the growth of publications, authorship patterns, collaboration, and prolific authors, country contribution, most active institutions, preferred journals, and top-cited articles. Based on our findings, there is a continuous growth of publications on melatonin research for 5 years since 2015. China was the largest contributor to melatonin research, followed by the United States. The Journal of Pineal Research published the most number of publications related to melatonin research. Our findings suggest that the role of melatonin in plant and food sciences, as well as in cancer, may in later years take over the clusters that earlier dominated melatonin research.
    Matched MeSH terms: Melatonin*
  16. Kumari Y, Choo BKM, Shaikh MF, Othman I
    Exp Ther Med, 2019 Aug;18(2):1407-1416.
    PMID: 31363378 DOI: 10.3892/etm.2019.7685
    Early life exposure to stress has been suggested to be a crucial factor for the development of the brain and its functions. It is well documented that childhood stress is a risk factor for sleep problems in adulthood. Piper betle L. leaf extract (PB) has been used in several traditional medicines to cure various ailments. Recently, PB has been proved to have antidepressant activity. The literature suggests that antidepressants affect the synthesis and release of melatonin through several mechanisms. Thus, this study investigated the potential role of PB for the treatment of sleep disruption after early life stress exposure. Firstly, dexamethasone (DEX) (2 and 20 mg/l for 24 h) was administered to zebrafish larvae on the 4th day post-fertilization (dpf) to induce early life stress. The effects of stress on behaviour during adulthood, melatonin level and stress-related gene expression (nfkb) in the brain were then studied. Next, the possible role of PB (10 and 30 mg/Kg) was studied by measuring its effect on behaviour and by quantifying the expression levels of several melatonin-related (MT1, MT2, aanat1, aanat2) and stress-related (nfkb) genes by qPCR. DEX-treated zebrafish exhibited anxious behaviour, along with a lower level of melatonin and a higher mRNA expression of nfkb. After treatment with PB, a similar effect on behaviour and gene expression levels as the melatonin treatment group (10 mg/kg; positive control) was seen in adult zebrafish. These molecular confirmations of the observed behavioural effects of the PB indicate a possible role in the treatment of early life stress-induced sleep disruption.
    Matched MeSH terms: Melatonin
  17. Tiong YL, Ng KY, Koh RY, Ponnudurai G, Chye SM
    Exp Ther Med, 2020 Nov;20(5):16.
    PMID: 32934681 DOI: 10.3892/etm.2020.9143
    Upon peripheral nerve injury (PNI), continuous proliferation of Schwann cells is critical for axon regeneration and tubular reconstruction for nerve regeneration. Melatonin is a hormone that is able to induce proliferation in various cell types. In the present study, the effects of melatonin on promoting Schwann cell proliferation and the molecular mechanism involved were investigated. The present results showed that melatonin enhanced the melatonin receptors (MT1 and MT2) expression in Schwann cells. Melatonin induced Schwann cell dedifferentiation into progenitor-like Schwann cells, as observed by immunofluorescence staining, which showed Sox2 marker expression. In addition, melatonin enhanced Schwann cell proliferation, mediated by the upregulation of glial cell-derived neurotropic factor (GNDF) and protein kinase C (PKC). Furthermore, the Ras/Raf/ERK and MAPK signaling pathways were also involved in Schwann cell dedifferentiation and proliferation. In conclusion, melatonin induced Schwann cell dedifferentiation and proliferation via the Ras/Raf/ERK, MAPK and GDNF/PKC pathways. The present results suggested that melatonin could be used to enhance the recovery of PNI.
    Matched MeSH terms: Melatonin; Receptors, Melatonin
  18. Singh HJ, Keah LS, Kumar A, Sirajudeen KN
    Exp. Toxicol. Pathol., 2012 Nov;64(7-8):751-2.
    PMID: 21354772 DOI: 10.1016/j.etp.2011.01.011
    This report documents an incidental finding during a study investigating the effects of melatonin supplementation on the development of blood pressure in SHR. Administration of 10 mg/kg/day of melatonin in drinking water during pregnancy to Wistar-Kyoto (WKY) dams caused a loss of more than 50% of the pups by the age of three weeks and 95% by the age of 6 weeks. There was no maternal morbidity or mortality in the two strains or death of any of the SHR pups. No obvious physical defects were present but mean body weight was lower in the surviving WKY rats when compared to that of melatonin supplemented SHR or non-supplemented WKY pups. The reason for the high mortality in WKY pups is uncertain and appears to be strain if not batch specific. There is a need for caution in its use, particularly during pregnancy, and clearly necessitates more detailed studies.
    Matched MeSH terms: Melatonin/administration & dosage; Melatonin/adverse effects*; Melatonin/pharmacology
  19. Zakaria R, Ahmad AH, Othman Z
    Folia Biol. (Praha), 2016;62(5):181-187.
    PMID: 27978412
    Pineal melatonin biosynthesis is regulated by the circadian clock located in the suprachiasmatic nucleus of the hypothalamus. Melatonin has been found to modulate the learning and memory process in human as well as in animals. Endogenous melatonin modulates the process of newly acquired information into long-term memory, while melatonin treatment has been found to reduce memory deficits in elderly people and in various animal models. However, the mechanisms mediating the enhancing effect of melatonin on memory remain elusive. This review intends to explore the possible mechanisms by looking at previous data on the effects of melatonin treatment on memory performance in rodents.
    Matched MeSH terms: Melatonin/pharmacology*; Melatonin/therapeutic use
  20. Tiong YL, Ng KY, Koh RY, Ponnudurai G, Chye SM
    Horm Mol Biol Clin Investig, 2020 Jun 29;41(4).
    PMID: 32598308 DOI: 10.1515/hmbci-2020-0009
    BACKGROUND: Cardiovascular disease (CVD) is one of the major cause of mortality in diabetic patients. Evidence suggests that hyperglycemia in diabetic patients contributes to increased risk of CVD. This study is to investigate the therapeutic effects of melatonin on glucose-treated human umbilical vein endothelial cells (HUVEC) and provide insights on the underlying mechanisms.

    MATERIALS AND METHODS: Cell viability was determined using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Reactive oxygen species (ROS) and membrane potential was detected using 2',7'-dichlorofluorescein diacetate and 5,5',6,6'-tetrachloro-1,1',3,3'-tetraethylbenzimidazolcarbocyanine iodide (JC-1) dye staining, respectively. While, cell apoptosis was determined by Annexin-V staining and protein expression was measured using Western blot.

    RESULTS: Our results suggested that melatonin inhibited glucose-induced ROS elevation, mitochondria dysfunction and apoptosis on HUVEC. Melatonin inhibited glucose-induced HUVEC apoptosis via PI3K/Akt signaling pathway. Activation of Akt further activated BcL-2 pathway through upregulation of Mcl-1 expression and downregulation Bax expression in order to inhibit glucose-induced HUVEC apoptosis. Besides that, melatonin promoted downregulation of oxLDL/LOX-1 in order to inhibit glucose-induced HUVEC apoptosis.

    CONCLUSIONS: In conclusion, our results suggested that melatonin exerted vasculoprotective effects against glucose-induced apoptosis in HUVEC through PI3K/Akt, Bcl-2 and oxLDL/LOX-1 signaling pathways.

    Matched MeSH terms: Melatonin/pharmacology*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links