Displaying 1 publication

Abstract:
Sort:
  1. Sung YY, Dhaene T, Defoirdt T, Boon N, MacRae TH, Sorgeloos P, et al.
    Cell Stress Chaperones, 2009 Nov;14(6):603-9.
    PMID: 19373565 DOI: 10.1007/s12192-009-0112-2
    Feeding of bacterially encapsulated heat shock proteins (Hsps) to invertebrates is a novel way to limit Vibrio infection. As an example, ingestion of Escherichia coli overproducing prokaryotic Hsps significantly improves survival of gnotobiotically cultured Artemia larvae upon challenge with pathogenic Vibrio campbellii. The relationship between Hsp accumulation and enhanced resistance to infection may involve DnaK, the prokaryotic equivalent to Hsp70, a major molecular chaperone in eukaryotic cells. In support of this proposal, heat-stressed bacterial strains LVS 2 (Bacillus sp.), LVS 3 (Aeromonas hydrophila), LVS 8 (Vibrio sp.), GR 8 (Cytophaga sp.), and GR 10 (Roseobacter sp.) were shown in this work to be more effective than nonheated bacteria in protecting gnotobiotic Artemia larvae against V. campbellii challenge. Immunoprobing of Western blots and quantification by enzyme-linked immunosorbent assay revealed that the amount of DnaK in bacteria and their ability to enhance larval resistance to infection by V. campbellii are correlated. Although the function of DnaK is uncertain, it may improve tolerance to V. campbellii via immune stimulation, a possibility of significance from a fundamental perspective and also because it could be applied in aquaculture, a major method of food production.
    Matched MeSH terms: Molecular Chaperones/biosynthesis*
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links