Displaying all 3 publications

Abstract:
Sort:
  1. Rafiqul IS, Sakinah AM, Zularisam AW
    Appl Biochem Biotechnol, 2015 Jun;176(4):1071-83.
    PMID: 25904039 DOI: 10.1007/s12010-015-1630-2
    Xylose-rich sawdust hydrolysate can be an economic substrate for the enzymatic production of xylitol, a specialty product. It is important to identify the process factors influencing xylitol production. This research aimed to screen the parameters significantly affecting bioxylitol synthesis from wood sawdust by xylose reductase (XR). Enzymatic bioxylitol production was conducted to estimate the effect of different variables reaction time (2-18 h), temperature (20-70 °C), pH (4.0-9.0), NADPH (1.17-5.32 g/L), and enzyme concentration (2-6 %) on the yield of xylitol. Fractional factorial design was followed to identify the key process factors. The screening design identified that time, temperature, and pH are the most significant factors influencing bioxylitol production among the variables with the values of 12 h, 35 °C, and 7.0, respectively. These conditions led to a xylitol yield of 71 % (w/w). This is the first report on the statistical screening of process variables influencing enzyme-based bioxylitol production from lignocellulosic biomass.
    Matched MeSH terms: NADP/chemistry*
  2. Zifruddin AN, Mohamad-Khalid KA, Suhaimi SA, Mohamed-Hussein ZA, Hassan M
    Biosci Biotechnol Biochem, 2021 Jun 24;85(7):1628-1638.
    PMID: 33890631 DOI: 10.1093/bbb/zbab072
    Juvenile hormone III (JH III) plays an important role in insect reproduction, development, and behavior. The second branch of JH III production includes oxidation of farnesol to farnesal by farnesol dehydrogenase. This study reported the identification and characterization of Plutella xylostella farnesol dehydrogenase (PxFoLDH). Our results showed that PxFoLDH belongs to the short-chain dehydrogenase/reductase superfamily, consisting of a single domain with a structurally conserved Rossman fold, an NAD(P) (H)-binding region and a structurally diverse C-terminal region. The purified enzyme displayed maximum activity at 55$\ $°C with pH 9.5 and was stable in the temperature below 70$\ ^\circ $C. PxFoLDH was determined to be a monomer with a relative molecular weight of 27 kDa and highly specific for trans, trans-farnesol, and NADP+. Among analog inhibitors tested, farnesyl acetate was the most effective inhibitor with the lowest Ki value of 0.02 µm. Our findings showed this purified enzyme may represent as NADP+-farnesol dehydrogenase.
    Matched MeSH terms: NADP/chemistry*
  3. Hassan M, Maarof ND, Ali ZM, Noor NM, Othman R, Mori N
    Biosci Biotechnol Biochem, 2012;76(8):1463-70.
    PMID: 22878188
    NADP(+)-dependent geraniol dehydrogenase (EC 1.1.1.183) is an enzyme that catalyzes the oxidation of geraniol to geranial. Stable, highly active cell-free extract was obtained from Polygonum minus leaves using polyvinylpolypyrrolidone, Amberlite XAD-4, glycerol, 2-mercaptoethanol, thiourea, and phenylmethylsulfonylfluoride in tricine-NaOH buffer (pH 7.5). The enzyme preparation was separated into two activity peaks, geraniol-DH I and II, by DEAE-Toyopearl 650M column chromatography at pH 7.5. Both isoenzymes were purified to homogeneity in three chromatographic steps. The geraniol-DH isoenzymes were similar in molecular mass, optimal temperature, and pH, but the isoelectric point, substrate specificity, and kinetic parameters were different. The K(m) values for geraniol of geraniol-DH I and II appeared to be 0.4 mM and 0.185 mM respectively. P. minus geraniol-DHs are unusual among geraniol-DHs in view of their thermal stability and optimal temperatures, and also their high specificity for allylic alcohols and NADP(+).
    Matched MeSH terms: NADP/chemistry
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links