Displaying all 4 publications

Abstract:
Sort:
  1. Medina AM, Rivera FP, Riveros M, Ochoa TJ, Pons MJ, Ruiz J
    Trop Biomed, 2023 Jun 01;40(2):183-187.
    PMID: 37650405 DOI: 10.47665/tb.40.2.009
    This study analysed the mechanisms of quinolone resistance among enterotoxigenic Escherichia coli (ETEC) in a periurban area of Lima, Peru. The susceptibility to nalidixic acid and ciprofloxacin, the role of Phe-Arg-b-Naphtylamyde inhibitable-(PAbN) efflux pumps, the presence of mutations in gyrA and parC as well as the presence of aac(6')Ib-cr, qepA, qnrA, qnrB, qnrC, qnrD, qnrVC and oqxAB were determined in 31 ETEC from previous case/control studies of children's diarrhoea. Discordances between disk diffusion, with all isolates showing intermediate or fully resistance to nalidixic acid, and minimal inhibitory concentration (MIC), with 7 isolates being below considered resistance breakpoint, were observed. Twenty-one isolates possessed gyrA mutations (19 S83L, 2 S83A). AAC(6') Ib-cr, QnrS, QnrB and QepA were found in 7, 6, 2 and 1 isolates respectively, with 3 isolates presenting 2 transferable mechanisms of quinolone resistance (TMQR) concomitantly. TMQR were more frequent among isolates with MIC to nalidixic acid ranging from 2 to 16 mg/L (p=0.03), while gyrA mutations were more frequent among isolates with nalidixic acid MIC >= 128 mg/L (p=0.0002). In summary, the mechanisms of quinolone resistance present in ETEC isolates in Peru have been described. Differences in the prevalence of underlying mechanisms associated with final MIC levels were observed. The results suggest two different evolutive strategies to survive in the presence of quinolones related to specific bacterial genetic background.
    Matched MeSH terms: Nalidixic Acid/pharmacology
  2. Koh CL
    Trans R Soc Trop Med Hyg, 1986;80(1):158-61.
    PMID: 3726978
    Twenty-five strains of enterobacteria, isolated from man in Peninsular Malaysia and consisting of seven Enterobacter spp., five Escherichia coli, five Salmonella spp., four Klebsiella spp., two Shigella spp., one Proteus sp. and and one Providencia sp., were tested for antibiotic resistance and conjugative R plasmids. They were all sensitive to nalidixic acid and resistant to at least three antibiotics. The number of resistances ranged from 3 to 11 antibiotics, including cefoperazone and sisomicin (two) newly released antibiotics), in addition to common drugs of current use. Of the 25 isolates, 19 (76%) conjugally transferred, at varied frequencies, at least two resistance determinants. Results from equilibrium density gradient centrifugation, agarose gel electrophoresis and transformation experiments provided proof that the transferable resistances were plasmid-mediated. Restriction endonuclease cleavage patterns showed that the plasmids from Proteus strain K005 and Providencia strain K001 may be identical.
    Matched MeSH terms: Nalidixic Acid/pharmacology
  3. Lindgren MM, Kotilainen P, Huovinen P, Hurme S, Lukinmaa S, Webber MA, et al.
    Emerg Infect Dis, 2009 May;15(5):809-12.
    PMID: 19402977 DOI: 10.3201/eid1505.080849
    We tested the fluoroquinolone susceptibility of 499 Salmonella enterica isolates collected from travelers returning to Finland during 2003-2007. Among isolates from travelers to Thailand and Malaysia, reduced fluoroquinolone susceptibility decreased from 65% to 22% (p = 0.002). All isolates showing nonclassical quinolone resistance were from travelers to these 2 countries.
    Matched MeSH terms: Nalidixic Acid/pharmacology
  4. Thong KL, Ngoi ST, Chai LC, Teh CS
    Microb Drug Resist, 2016 Jun;22(4):259-72.
    PMID: 26683630 DOI: 10.1089/mdr.2015.0158
    The prevalence of quinolone-resistant Salmonella enterica is on the rise worldwide. Salmonella enterica is one of the major foodborne pathogens in Malaysia. Therefore, we aim to investigate the occurrence and mechanisms of quinolone resistance among Salmonella strains isolated in Malaysia. A total of 283 Salmonella strains isolated from food, humans, and animals were studied. The disk diffusion method was used to examine the quinolone susceptibility of the strains, and the minimum inhibitory concentration (MIC) values of nalidixic acid and ciprofloxacin were also determined. DNA sequencing of the quinolone resistance-determining regions (QRDRs) of gyrase and topoisomerase IV genes and the plasmid-borne qnr genes was performed. The transfer of the qnr gene was examined through transconjugation experiment. A total of 101 nalidixic acid-resistant Salmonella strains were identified. In general, all strains were highly resistant to nalidixic acid (average MICNAL, 170 μg/ml). Resistance to ciprofloxacin was observed in 30.7% of the strains (1 ≤ MICCIP ≤ 2 μg/ml). Majority of the strains contained missense mutations in the QRDR of gyrA (69.3%). Silent mutations were frequently detected in gyrB (75.2%), parC (27.7%), and parE (51.5%) within and beyond the QRDRs. Novel mutations were detected in parC and parE. The plasmid-borne qnrS1 variant was found in 36.6% of the strains, and two strains were found to be able to transfer the qnrS1 gene. Overall, mutations in gyrA and the presence of qnrS1 genes might have contributed to the high level of quinolone resistance among the strains. Our study provided a better understanding on the status of quinolone resistance among Salmonella strains circulating in Malaysia.
    Matched MeSH terms: Nalidixic Acid/pharmacology
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links