Displaying all 5 publications

Abstract:
Sort:
  1. Abd Rachman Isnadi MF, Chin VK, Abd Majid R, Lee TY, Atmadini Abdullah M, Bello Omenesa R, et al.
    Mediators Inflamm, 2018;2018:5346413.
    PMID: 29507527 DOI: 10.1155/2018/5346413
    Interleukin-33 (IL-33) is an IL-1 family member, which exhibits both pro- and anti-inflammatory properties solely based on the type of the disease itself. Generally, IL-33 is expressed by both endothelial and epithelial cells and mediates its function based on the interaction with various receptors, mainly with ST2 variants. IL-33 is a potent inducer for the Th2 immune response which includes defence mechanism in brain diseases. Thus, in this paper, we review the biological features of IL-33 and the critical roles of IL-33/ST2 pathway in selected neurological disorders including Alzheimer's disease, multiple sclerosis, and malaria infection to discuss the involvement of IL-33/ST2 pathway during these brain diseases and its potential as future immunotherapeutic agents or for intervention purposes.
    Matched MeSH terms: Nervous System Diseases/metabolism*
  2. Islam MA, Alam F, Kamal MA, Wong KK, Sasongko TH, Gan SH
    CNS Neurol Disord Drug Targets, 2016;15(10):1253-1265.
    PMID: 27658514 DOI: 10.2174/1871527315666160920122750
    Neurological manifestations or disorders associated with the central nervous system are among the most common and important clinical characteristics of antiphospholipid syndrome (APS). Although in the most recently updated (2006) APS classification criteria, the neurological manifestations encompass only transient ischemic attack and stroke, diverse 'non-criteria' neurological disorders or manifestations (i.e., headache, migraine, bipolar disorder, transverse myelitis, dementia, chorea, epileptic seizures, multiple sclerosis, psychosis, cognitive impairment, Tourette's syndrome, parkinsonism, dystonia, transient global amnesia, obsessive compulsive disorder and leukoencephalopathy) have been observed in APS patients. To date, the underlying mechanisms responsible for these abnormal neurological manifestations in APS remain unclear. In vivo experiments and human observational studies indicate the involvement of thrombotic events and/or high titers of antiphospholipid antibodies in the neuro-pathogenic cascade of APS. Although different types of neurologic manifestations in APS patients have successfully been treated with therapies involving anti-thrombotic regimens (i.e., anticoagulants and/or platelet antiaggregants), antineuralgic drugs (i.e., antidepressants, antipsychotics and antiepileptics) and immunosuppressive drugs alone or in combination, evidence-based guidelines for the management of the neurologic manifestations of APS remain unavailable. Therefore, further experimental, clinical and retrospective studies with larger patient cohorts are warranted to elucidate the pathogenic linkage between APS and the central nervous system in addition to randomized controlled trials to facilitate the discovery of appropriate medications for the 'non-criteria' neurologic manifestations of APS.
    Matched MeSH terms: Nervous System Diseases/metabolism*
  3. Achike FI, Kwan CY
    Clin Exp Pharmacol Physiol, 2003 Sep;30(9):605-15.
    PMID: 12940876
    1. Nitric oxide (NO) is formed enzymatically from l-arginine in the presence of nitric oxide synthase (NOS). Nitric oxide is generated constitutively in endothelial cells via sheer stress and blood-borne substances. Nitric oxide is also generated constitutively in neuronal cells and serves as a neurotransmitter and neuromodulator in non-adrenergic, non-cholinergic nerve endings. Furthermore, NO can also be formed via enzyme induction in many tissues in the presence of cytokines. 2. The ubiquitous presence of NO in the living body suggests that NO plays an important role in the maintenance of health. Being a free radical with vasodilatory properties, NO exerts dual effects on tissues and cells in various biological systems. At low concentrations, NO can dilate the blood vessels and improve the circulation, but at high concentrations it can cause circulatory shock and induce cell death. Thus, diseases can arise in the presence of the extreme ends of the physiological concentrations of NO. 3. The NO signalling pathway has, in recent years, become a target for new drug development. The high level of flavonoids, catechins, tannins and other polyphenolic compounds present in vegetables, fruits, soy, tea and even red wine (from grapes) is believed to contribute to their beneficial health effects. Some of these compounds induce NO formation from the endothelial cells to improve circulation and some suppress the induction of inducible NOS in inflammation and infection. 4. Many botanical medicinal herbs and drugs derived from these herbs have been shown to have effects on the NO signalling pathway. For example, the saponins from ginseng, ginsenosides, have been shown to relax blood vessels (probably contributing to the antifatigue and blood pressure-lowering effects of ginseng) and corpus cavernosum (thus, for the treatment of men suffering from erectile dysfunction; however, the legendary aphrodisiac effect of ginseng may be an overstatement). Many plant extracts or purified drugs derived from Chinese medicinal herbs with proposed actions on NO pathways are also reviewed.
    Matched MeSH terms: Nervous System Diseases/metabolism
  4. Sasmita AO, Kuruvilla J, Ling APK
    Int J Neurosci, 2018 Nov;128(11):1061-1077.
    PMID: 29667473 DOI: 10.1080/00207454.2018.1466781
    Background and purpose: Neurological diseases and injuries to the nervous system may cause inadvertent damage to neuronal and synaptic structures. Such phenomenon would lead to the development of neurological and neurodegenerative disorders which might affect memory, cognition and motoric functions. The body has various negative feedback systems which can induce beneficial neuroplastic changes in mediating some neuronal damage; however, such efforts are often not enough to ameliorate the derogatory changes. Materials and methods: Articles discussing studies to induce beneficial neuroplastic changes were retrieved from the databases, National Center for Biotechnology Information (NCBI) and MEDLINE, and reviewed. Results: This review highlights the significance of neuroplasticity in restoring neuronal functions and current advances in research to employ this positive cellular event by inducing synaptogenesis, neurogenesis, clearance of toxic amyloid beta (Aβ) and tau protein aggregates, or by providing neuroprotection. Compounds ranging from natural products (e.g. bilobalides, curcumin) to novel vaccines (e.g. AADvac1, RG7345) have been reported to induce long-lasting neuroplasticity in vitro and in vitro. Activity-dependent neuroplasticity is also inducible by regimens of exercises and therapies with instances in human studies proving major successes. Lastly, mechanical stimulation of brain regions through therapeutic hypothermia or deep brain stimulation has given insight on the larger scale of neuroplasticity within the nervous system. Conclusion: Harnessing neuroplasticity may not only offer an arm in the vast arsenal of approaches being taken to tackle neurological disorders, such as neurodegenerative diseases, but from ample evidence, it also has major implications in neuropsychological disorders.
    Matched MeSH terms: Nervous System Diseases/metabolism*
  5. Sampath Kumar A, Arun Maiya G, Shastry BA, Vaishali K, Maiya S, Umakanth S
    Diabetes Metab Syndr, 2018 10 10;13(1):344-348.
    PMID: 30641723 DOI: 10.1016/j.dsx.2018.10.005
    BACKGROUND: Basal Metabolic Rate (BMR) means the amount of energy utilized by body in physical and psychological resting rate, after a night sleep, awake without any previous physical activity post meal (10 h after last meal) & neutral environment. In people with type 2 diabetes mellitus (T2DM) there is an increase in BMR which is said to be associated with the level of glycaemic control. So, the objective of the study was to find out the correlation between BMR, Insulin resistance and Visceral fat in T2DM with peripheral neuropathy.

    MATERIALS & METHODS: A total of 50 participants with T2DM with peripheral neuropathy were included. Age group of 30-75 years were selected for the study. Participants with a known history of neurological disease, locomotor disability, and pregnancy were excluded from the study. Demographic details of the participants like duration of diabetes mellitus, age, Fasting Blood Glucose, Fasting Insulin, HOMA-IR, Glycated Haemoglobin (HBA1c), Neuropathy and Blood pressure values were noted. We measured Basal Metabolic Rate (BMR) by using Mifflin-St Jeor predictive equation in T2DM with peripheral neuropathy.

    RESULTS: The mean age of the participants is 60.16 ± 10.62. The mean duration of T2DM 13.44 ± 11.92. In the present study we found a statistical significant correlation between BMR and HOMA IR (r = 0.913*; p = 0.000), BMR & Fasting blood sugar (FBS) (r = 0.281*; p = 0.048), BMR and Visceral fat (VF) (r = 0.332*; p = 0.018).

    CONCLUSION: Basal metabolic rate is correlated to Homa-IR, visceral fat, fasting blood sugar and musculoskeletal mass among T2DM with peripheral neuropathy.

    Matched MeSH terms: Peripheral Nervous System Diseases/metabolism
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links