Displaying all 3 publications

Abstract:
Sort:
  1. Yuvaraj R, Murugappan M, Ibrahim NM, Sundaraj K, Omar MI, Mohamad K, et al.
    Int J Psychophysiol, 2014 Dec;94(3):482-95.
    PMID: 25109433 DOI: 10.1016/j.ijpsycho.2014.07.014
    In addition to classic motor signs and symptoms, individuals with Parkinson's disease (PD) are characterized by emotional deficits. Ongoing brain activity can be recorded by electroencephalograph (EEG) to discover the links between emotional states and brain activity. This study utilized machine-learning algorithms to categorize emotional states in PD patients compared with healthy controls (HC) using EEG. Twenty non-demented PD patients and 20 healthy age-, gender-, and education level-matched controls viewed happiness, sadness, fear, anger, surprise, and disgust emotional stimuli while fourteen-channel EEG was being recorded. Multimodal stimulus (combination of audio and visual) was used to evoke the emotions. To classify the EEG-based emotional states and visualize the changes of emotional states over time, this paper compares four kinds of EEG features for emotional state classification and proposes an approach to track the trajectory of emotion changes with manifold learning. From the experimental results using our EEG data set, we found that (a) bispectrum feature is superior to other three kinds of features, namely power spectrum, wavelet packet and nonlinear dynamical analysis; (b) higher frequency bands (alpha, beta and gamma) play a more important role in emotion activities than lower frequency bands (delta and theta) in both groups and; (c) the trajectory of emotion changes can be visualized by reducing subject-independent features with manifold learning. This provides a promising way of implementing visualization of patient's emotional state in real time and leads to a practical system for noninvasive assessment of the emotional impairments associated with neurological disorders.
    Matched MeSH terms: Parkinson Disease/classification*
  2. Ajimsha MS, Majeed NA, Chinnavan E, Thulasyammal RP
    Complement Ther Med, 2014 Jun;22(3):419-25.
    PMID: 24906579 DOI: 10.1016/j.ctim.2014.03.013
    Relaxation training can be an important adjunct in reducing symptoms associated with Parkinson's disease (PD). Autogenic Training (AT) is a simple, easily administered and inexpensive technique for retraining the mind and the body to be able to relax. AT uses visual imagery and body awareness to promote a state of deep relaxation.
    Matched MeSH terms: Parkinson Disease/classification
  3. Hariharan M, Polat K, Sindhu R
    Comput Methods Programs Biomed, 2014 Mar;113(3):904-13.
    PMID: 24485390 DOI: 10.1016/j.cmpb.2014.01.004
    Elderly people are commonly affected by Parkinson's disease (PD) which is one of the most common neurodegenerative disorders due to the loss of dopamine-producing brain cells. People with PD's (PWP) may have difficulty in walking, talking or completing other simple tasks. Variety of medications is available to treat PD. Recently, researchers have found that voice signals recorded from the PWP is becoming a useful tool to differentiate them from healthy controls. Several dysphonia features, feature reduction/selection techniques and classification algorithms were proposed by researchers in the literature to detect PD. In this paper, hybrid intelligent system is proposed which includes feature pre-processing using Model-based clustering (Gaussian mixture model), feature reduction/selection using principal component analysis (PCA), linear discriminant analysis (LDA), sequential forward selection (SFS) and sequential backward selection (SBS), and classification using three supervised classifiers such as least-square support vector machine (LS-SVM), probabilistic neural network (PNN) and general regression neural network (GRNN). PD dataset was used from University of California-Irvine (UCI) machine learning database. The strength of the proposed method has been evaluated through several performance measures. The experimental results show that the combination of feature pre-processing, feature reduction/selection methods and classification gives a maximum classification accuracy of 100% for the Parkinson's dataset.
    Matched MeSH terms: Parkinson Disease/classification
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links