Displaying all 3 publications

Abstract:
Sort:
  1. Xu Y, Victorio CBL, Meng T, Jia Q, Tan YJ, Chua KB
    Virol Sin, 2019 Jun;34(3):262-269.
    PMID: 31016480 DOI: 10.1007/s12250-019-00116-1
    Our previous work has shown that Saffold virus (SAFV) induced several rodent and primate cell lines to undergo apoptosis (Xu et al. in Emerg Microb Infect 3:1-8, 2014), but the essential viral proteins of SAFV involved in apoptotic activity lack study. In this study, we individually transfected the viral proteins of SAFV into HEp-2 and Vero cells to assess their ability to induce apoptosis, and found that the 2B and 3C proteins are proapoptotic. Further investigation indicated the transmembrane domain of the 2B protein is essential for the apoptotic activity and tetramer formation of the 2B protein. Our research provides clues for the possible mechanisms of apoptosis induced by SAFV in different cell lines. It also opens up new directions to study viral proteins (the 2B, 3C protein), and sets the stage for future exploration of any possible link between SAFV, inclusive of its related uncultivable genotypes, and multiple sclerosis.
    Matched MeSH terms: Picornaviridae/genetics
  2. Poh CL, Tan EL
    Methods Mol Biol, 2011;665:65-77.
    PMID: 21116796 DOI: 10.1007/978-1-60761-817-1_5
    Enteroviruses are positive stranded RNA viruses belonging to the genus Enterovirus of the Picornaviridae family. Human enteroviruses are transmitted through the fecal-oral route and have been shown to cause mild to life-threatening diseases. Various diagnostic methods have been developed to detect enteroviruses from clinical specimens but many were impeded by requirements for special reagents, lengthy procedures, low sensitivity or cross-reactivity. This chapter describes rapid and highly sensitive methods of enteroviral detection directly from clinical specimens based on a conventional one-step Reverse Transcription polymerase chain reaction (RT-PCR) and a one-step real-time RT-PCR.
    Matched MeSH terms: Picornaviridae/genetics
  3. Hansen TA, Mollerup S, Nguyen NP, White NE, Coghlan M, Alquezar-Planas DE, et al.
    Emerg Microbes Infect, 2016 Aug 17;5(8):e90.
    PMID: 27530749 DOI: 10.1038/emi.2016.90
    Outbreaks of zoonotic diseases in humans and livestock are not uncommon, and an important component in containment of such emerging viral diseases is rapid and reliable diagnostics. Such methods are often PCR-based and hence require the availability of sequence data from the pathogen. Rattus norvegicus (R. norvegicus) is a known reservoir for important zoonotic pathogens. Transmission may be direct via contact with the animal, for example, through exposure to its faecal matter, or indirectly mediated by arthropod vectors. Here we investigated the viral content in rat faecal matter (n=29) collected from two continents by analyzing 2.2 billion next-generation sequencing reads derived from both DNA and RNA. Among other virus families, we found sequences from members of the Picornaviridae to be abundant in the microbiome of all the samples. Here we describe the diversity of the picornavirus-like contigs including near-full-length genomes closely related to the Boone cardiovirus and Theiler's encephalomyelitis virus. From this study, we conclude that picornaviruses within R. norvegicus are more diverse than previously recognized. The virome of R. norvegicus should be investigated further to assess the full potential for zoonotic virus transmission.
    Matched MeSH terms: Picornaviridae/genetics*
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links